8 resultados para CONTINUOUS PROPORTIONS

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. The aim of this research was to evaluate the effect of enteral feeding on tonometric measurement of gastric regional carbon dioxide levels (PrCO2) in normal healthy volunteers. Design and methods. The sample included 12 healthy volunteers recruited by the University Clinical Research Center (UCRC). An air tonometry system monitored PrCO2 levels using a tonometer placed in the lumen of the stomach via orogastric intubation. PrCO2 was automatically measured and recorded every 10 minutes throughout the five hour study period. An oral dose of famotidine 40 mg was self-administered the evening prior to and the morning of the study. Instillation of Isocal® High Nitrogen (HN) was used for enteral feeding in hourly escalating doses of 0, 40, 60, and 80 ml/hr with no feeding during the fifth hour. Results . PrCO2 measurements at time 0 and 10 minutes (41.4 ± 6.5 and 41.8 ± 5.7, respectively) demonstrated biologic precision (Levene's Test statistic = 0.085, p-value 0.774). Biologic precision was lost between T130 and T140 40 when compared to baseline TO (Levene's Test statistic = 1.70, p-value 0.205; and 3.205, p-value 0.042, respectively) and returned to non-significant levels between T270 and T280 (Levene's Test statistic = 3.083, p-value 0.043; and 2.307, p-value 0.143, respectively). Isocal® HN significantly affected the biologic accuracy of PrCO2 measurements (repeated measures ANOVA F 4.91, p-value <0.001). After 20 minutes of enteral feeding at 40 ml/hr, PrCO2 significantly increased (41.4 ± 6.5 to 46.6 ± 4.25, F = 5.4, p-value 0.029). Maximum variance from baseline (41.4 ± 6.5 to 61.3 ± 15.2, F = 17.22, p-value <0.001) was noted after 30 minutes of Isocal® HN at 80 ml/hr or 210 minutes from baseline. The significant elevations in PrCO2 continued throughout the study. Sixty minutes after discontinuation of enteral feeding, PrCO2 remained significantly elevated from baseline (41.4 ± 6.5 to 51.8 ± 9.2, F = 10.15, p-value 0.004). Conclusion. Enteral feeding with Isocal® HN significantly affects the precision and accuracy of PrCO2 measurements in healthy volunteers. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to investigate the effects of predictor variable correlations and patterns of missingness with dichotomous and/or continuous data in small samples when missing data is multiply imputed. Missing data of predictor variables is multiply imputed under three different multivariate models: the multivariate normal model for continuous data, the multinomial model for dichotomous data and the general location model for mixed dichotomous and continuous data. Subsequent to the multiple imputation process, Type I error rates of the regression coefficients obtained with logistic regression analysis are estimated under various conditions of correlation structure, sample size, type of data and patterns of missing data. The distributional properties of average mean, variance and correlations among the predictor variables are assessed after the multiple imputation process. ^ For continuous predictor data under the multivariate normal model, Type I error rates are generally within the nominal values with samples of size n = 100. Smaller samples of size n = 50 resulted in more conservative estimates (i.e., lower than the nominal value). Correlation and variance estimates of the original data are retained after multiple imputation with less than 50% missing continuous predictor data. For dichotomous predictor data under the multinomial model, Type I error rates are generally conservative, which in part is due to the sparseness of the data. The correlation structure for the predictor variables is not well retained on multiply-imputed data from small samples with more than 50% missing data with this model. For mixed continuous and dichotomous predictor data, the results are similar to those found under the multivariate normal model for continuous data and under the multinomial model for dichotomous data. With all data types, a fully-observed variable included with variables subject to missingness in the multiple imputation process and subsequent statistical analysis provided liberal (larger than nominal values) Type I error rates under a specific pattern of missing data. It is suggested that future studies focus on the effects of multiple imputation in multivariate settings with more realistic data characteristics and a variety of multivariate analyses, assessing both Type I error and power. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standard methods for testing safety data are needed to ensure the safe conduct of clinical trials. In particular, objective rules for reliably identifying unsafe treatments need to be put into place to help protect patients from unnecessary harm. DMCs are uniquely qualified to evaluate accumulating unblinded data and make recommendations about the continuing safe conduct of a trial. However, it is the trial leadership who must make the tough ethical decision about stopping a trial, and they could benefit from objective statistical rules that help them judge the strength of evidence contained in the blinded data. We design early stopping rules for harm that act as continuous safety screens for randomized controlled clinical trials with blinded treatment information, which could be used by anyone, including trial investigators (and trial leadership). A Bayesian framework, with emphasis on the likelihood function, is used to allow for continuous monitoring without adjusting for multiple comparisons. Close collaboration between the statistician and the clinical investigators will be needed in order to design safety screens with good operating characteristics. Though the math underlying this procedure may be computationally intensive, implementation of the statistical rules will be easy and the continuous screening provided will give suitably early warning when real problems were to emerge. Trial investigators and trial leadership need these safety screens to help them to effectively monitor the ongoing safe conduct of clinical trials with blinded data.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction effect is an important scientific interest for many areas of research. Common approach for investigating the interaction effect of two continuous covariates on a response variable is through a cross-product term in multiple linear regression. In epidemiological studies, the two-way analysis of variance (ANOVA) type of method has also been utilized to examine the interaction effect by replacing the continuous covariates with their discretized levels. However, the implications of model assumptions of either approach have not been examined and the statistical validation has only focused on the general method, not specifically for the interaction effect.^ In this dissertation, we investigated the validity of both approaches based on the mathematical assumptions for non-skewed data. We showed that linear regression may not be an appropriate model when the interaction effect exists because it implies a highly skewed distribution for the response variable. We also showed that the normality and constant variance assumptions required by ANOVA are not satisfied in the model where the continuous covariates are replaced with their discretized levels. Therefore, naïve application of ANOVA method may lead to an incorrect conclusion. ^ Given the problems identified above, we proposed a novel method modifying from the traditional ANOVA approach to rigorously evaluate the interaction effect. The analytical expression of the interaction effect was derived based on the conditional distribution of the response variable given the discretized continuous covariates. A testing procedure that combines the p-values from each level of the discretized covariates was developed to test the overall significance of the interaction effect. According to the simulation study, the proposed method is more powerful then the least squares regression and the ANOVA method in detecting the interaction effect when data comes from a trivariate normal distribution. The proposed method was applied to a dataset from the National Institute of Neurological Disorders and Stroke (NINDS) tissue plasminogen activator (t-PA) stroke trial, and baseline age-by-weight interaction effect was found significant in predicting the change from baseline in NIHSS at Month-3 among patients received t-PA therapy.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Logistic regression is one of the most important tools in the analysis of epidemiological and clinical data. Such data often contain missing values for one or more variables. Common practice is to eliminate all individuals for whom any information is missing. This deletion approach does not make efficient use of available information and often introduces bias.^ Two methods were developed to estimate logistic regression coefficients for mixed dichotomous and continuous covariates including partially observed binary covariates. The data were assumed missing at random (MAR). One method (PD) used predictive distribution as weight to calculate the average of the logistic regressions performing on all possible values of missing observations, and the second method (RS) used a variant of resampling technique. Additional seven methods were compared with these two approaches in a simulation study. They are: (1) Analysis based on only the complete cases, (2) Substituting the mean of the observed values for the missing value, (3) An imputation technique based on the proportions of observed data, (4) Regressing the partially observed covariates on the remaining continuous covariates, (5) Regressing the partially observed covariates on the remaining continuous covariates conditional on response variable, (6) Regressing the partially observed covariates on the remaining continuous covariates and response variable, and (7) EM algorithm. Both proposed methods showed smaller standard errors (s.e.) for the coefficient involving the partially observed covariate and for the other coefficients as well. However, both methods, especially PD, are computationally demanding; thus for analysis of large data sets with partially observed covariates, further refinement of these approaches is needed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose of the Study: This study evaluated the prevalence of periodontal disease between Mexican American elderly and European American elderly residing in three socio-economically distinct neighborhoods in San Antonio, Texas. ^ Study Group: Subjects for the original protocol were participants of the Oral Health: San Antonio Longitudinal Study of Aging (OH: SALSA), which began with National Institutes of Health (NIH) funding in 1993 (M.J. Saunders, PI). The cohort in the study was the individuals who had been enrolled in Phases I and III of the San Antonio Heart Study (SAHS). This SAHS/SALSA sample is a community-based probability sample of Mexican American and European American residents from three socio-economically distinct San Antonio neighborhoods: low-income barrio, middle-income transitional, and upper-income suburban. The OH: SALSA cohort was established between July 1993 and May 1998 by sampling two subsets of the San Antonio Heart Study (SAHS) cohort. These subsets included the San Antonio Longitudinal Study of Aging (SALSA) cohort, comprised of the oldest members of the SAHS (age 65+ yrs. old), and a younger set of controls (age 35-64 yrs. old) sampled from the remainder of the SAHS cohort. ^ Methods: The study used simple descriptive statistics to describe the sociodemographic characteristics and periodontal disease indicators of the OH: SALSA participants. Means and standard deviations were used to summarize continuous measures. Proportions were used to summarize categorical measures. Simple m x n chi square statistics was used to compare ethnic differences. A multivariable ordered logit regression was used to estimate the prevalence of periodontal disease and test ethnic group and neighborhood differences in the prevalence of periodontal disease. A multivariable model adjustment for socio-economic status (income and education), gender, and age (treated as confounders) was applied. ^ Summary: In the unadjusted and adjusted model, Mexican American elderly demonstrated the greatest prevalence for periodontitis, p < 0.05. Mexican American elderly in barrio neighborhoods demonstrated the greatest prevalence for severe periodontitis, with unadjusted prevalence rates of 31.7%, 22.3%, and 22.4% for Mexican American elderly barrio, transitional, and suburban neighborhoods, respectively. Also, Mexican American elderly had adjusted prevalence rates of 29.4%, 23.7%, and 20.4% for barrio, transitional, and suburban neighborhoods, respectively. ^ Conclusion: This study indicates that the prevalence of periodontal disease is an important oral health issue among the Mexican American elderly. The results suggest that the socioeconomic status of the residential neighborhood increased the risk for severe periodontal disease among the Mexican American elderly when compared to European American elderly. A viable approach to recognizing oral health disparities in our growing population of Mexican American elderly is imperative for the provision of special care programs that will help increase the quality of care in this minority population.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixture modeling is commonly used to model categorical latent variables that represent subpopulations in which population membership is unknown but can be inferred from the data. In relatively recent years, the potential of finite mixture models has been applied in time-to-event data. However, the commonly used survival mixture model assumes that the effects of the covariates involved in failure times differ across latent classes, but the covariate distribution is homogeneous. The aim of this dissertation is to develop a method to examine time-to-event data in the presence of unobserved heterogeneity under a framework of mixture modeling. A joint model is developed to incorporate the latent survival trajectory along with the observed information for the joint analysis of a time-to-event variable, its discrete and continuous covariates, and a latent class variable. It is assumed that the effects of covariates on survival times and the distribution of covariates vary across different latent classes. The unobservable survival trajectories are identified through estimating the probability that a subject belongs to a particular class based on observed information. We applied this method to a Hodgkin lymphoma study with long-term follow-up and observed four distinct latent classes in terms of long-term survival and distributions of prognostic factors. Our results from simulation studies and from the Hodgkin lymphoma study demonstrated the superiority of our joint model compared with the conventional survival model. This flexible inference method provides more accurate estimation and accommodates unobservable heterogeneity among individuals while taking involved interactions between covariates into consideration.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this dissertation, we propose a continuous-time Markov chain model to examine the longitudinal data that have three categories in the outcome variable. The advantage of this model is that it permits a different number of measurements for each subject and the duration between two consecutive time points of measurements can be irregular. Using the maximum likelihood principle, we can estimate the transition probability between two time points. By using the information provided by the independent variables, this model can also estimate the transition probability for each subject. The Monte Carlo simulation method will be used to investigate the goodness of model fitting compared with that obtained from other models. A public health example will be used to demonstrate the application of this method. ^