3 resultados para COMMON POLYMORPHISMS

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer is the most common cancer in women in the United States and is a leading cause of cancer-related deaths (1). Recently, dietary heterocyclic amines (HCAs) have been proposed to be a risk factor for breast cancer (2). This study uses the data collected for a case-control study conducted at the M.D. Anderson Cancer Center to assess the association between breast cancer risk and HCAs {2-amino-1-methyl-6-phenylimidazole [4,5-b] pyridine (PhIP), 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo [4,5-f] quinoxaline (DiMeIQx) and mutagenicity of HCAs} and to examine if this association is modified by genetic polymorphisms of N-acetyl transferases (NAT1/NAT2). The NAT1/2 genotype was determined using Taqman technology. HCAs were estimated by using a meat preparation questionnaire on meat type, cooking method, and doneness, combined with a quantitative HCA database. Three hundred and fifty patients with breast cancer attending the Diagnostic Radiology Clinic at M. D. Anderson Cancer Center and fulfilling the eligibility criteria were compared to three hundred and fifty patients attending the same clinic for benign breast lesions to answer these questions. Logistic regression models were used to control for known risk factors and showed no statistically significant association between breast cancer versus benign breast cancer lesions and dietary intake of heterocyclic amines. There was no clear difference in their effect after subgroup analyses in different acetylator strata of NAT1/2 and no statistical interactions were found between NAT1/2 genotypes and HCAs, suggesting no effect modification by NAT1/2 acetylator status. These results suggest the need for further research to analyze if these null associations were because of the benign breast lesions sharing the risk factors with breast cancer or any other factors which haven't been explored yet.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypertension is usually defined as having values of systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg. Hypertension is one of the main adverse effects of glucocorticoid on the cardiovascular system. Glucocorticoids are essential hormones, secreted from adrenal glands in circadian fashion. Glucocorticoid's effect on blood pressure is conveyed by the glucocorticoid receptor (NR3C1), an omnipresent nuclear transcription factor. Although polymorphisms in this gene have long been implicated to be a causal factor for cardiovascular diseases such as hypertension, no study has yet thoroughly interrogated the gene's polymorphisms for their effect on blood pressure levels. Therefore, I have first resequenced ∼30 kb of the gene, encompassing all exons, promoter regions, 5'/3' UTRs as well as at least 1.5 kb of the gene's flanking regions from 114 chromosome 5 monosomic cell lines, comprised of three major American ethnic groups—European American, African American and Mexican American. I observed 115 polymorphisms and 14 common molecularly phased haplotypes. A subset of markers was chosen for genotyping study populations of GENOA (Genetic Epidemiology Network of Atherosclerosis; 1022 non-Hispanic whites, 1228 African Americans and 954 Mexican Americans). Since these study populations include sibships, the family-based association test was performed on 4 blood pressure-related quantitative variables—pulse, systolic blood pressure, diastolic blood pressure and mean arterial pressure. Using these analyses, multiple correlated SNPs are significantly protective against high systolic blood pressure in non-Hispanic whites, which includes rsb198, a SNP formerly associated with beneficial body compositions. Haplotype association analysis also supports this finding and all p-values remained significant after permutation tests. I therefore conclude that multiple correlated SNPs on the gene may confer protection against high blood pressure in non-Hispanic whites. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Medulloblastoma is a type of brain cancer that accounts for approximately 7-8% of all intracranial tumors and 20-30% of pediatric brain tumors. It is the most common type of malignant brain tumor in childhood. It was reported that majority of survivors with medulloblastoma have social problems, endocrine deficits, and neurological complications. Furthermore, all had significant deficits in neurocognitive functioning. Glutathione S-transferases belong to a family of isoenzymes that catalyze the glutathione conjugation of a variety of electrophilic compounds. ^ Objective. We aimed to determine whether the development of neurocognitive impairment is associated with GST polymorphisms among children and adolescents diagnosed with medulloblastoma (MB) after radiation therapy. ^ Methods. A pilot study composing of 16 children and adolescents diagnosed with MB at Texas Children's Cancer Center was conducted. The t-test was used to determine if the GST polymorphisms were related to neurocognitive impairment and logistic regression was performed to explore association between GST polymorphisms and gender, age at diagnosis, race/ethnicity, and risk group. ^ Results. An association was observed between GSTT1 polymorphism and cognitive impairment one year after radiation and GSTM1 polymorphism two years after radiation. It was observed that patients with GSTT1 null genotype have lower performance IQ (p=0.03) and full scale IQ (p=0.02) one year after radiation and patients with GSTM1 null genotype have lower verbal IQ (p=0.02) two years after radiation. Patients under age 8 have a statistically non-significant higher risk of having not null genotypes compared to those older than age 8 (OR= 7.5, 95%CI: 0.62-90.65 and OR= 2.63, 95%CI: 0.30-23.00 for GSTT1 and GSTM1 respectively). ^ Conclusion. There was a significant association between GSTT1 polymorphism and cognitive impairment one year after radiation and between GSTM1 polymorphism and cognitive impairment two years after radiation. Further large scale studies may be needed to confirm this finding and to examine the underlying mechanism of neurocognitive impairments after treatment of medulloblastoma patients.^