2 resultados para CHOLINE-DEFICIENT DIET

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

I-compounds are newly discovered covalent DNA modifications detected by the $\sp{32}$P-postlabeling assay. They are age-dependent, tissue-specific and sex-different. The origin(s), chemistry and function(s) of I-compounds are unknown. The total level of I-compounds in 8-10 month old rat liver is 1 adduct in 10$\sp7$ nucleotides, which is not neglectable. It is proposed that I-compounds may play a role in spontaneous tumorigenesis and aging.^ In the present project, I-compounds were investigated by several different approaches. (1) Dietary modulation of I-compounds. (2) Comparison of I-compounds with persistent carcinogen DNA adducts and 5-methylcytosine. (3) Strain differences of I-compounds in relation to organ site spontaneous tumorigenesis. (4) Effects of nongenotoxic hepatocarcinogenes on I-compounds.^ It was demonstrated that the formation of I-compounds is diet-related. Rats fed natural ingredient diet exhibited more complex I-spot patterns and much higher levels than rats fed purified diet. Variation of major nutrients (carbohydrate, protein and fat) in the diet, produced quantitative differences in I-compounds of rat liver and kidney DNAs. Physiological level of vitamin E in the diet reduced intensity of one I-spot compared with vitamin E deficient diet. However, extremely high level of vitamin E in the diet gave extra spot and enhanced the intensities of some I-spots.^ In regenerating rat liver, I-compounds levels were reduced, as carcinogen DNA adducts, but not 5-methylcytosine, i.e. a normal DNA modification.^ Animals with higher incidences of spontaneous tumor or degenerative diseases tended to have a lower level of I-compounds.^ Choline devoid diet induced a drastic reduction of I-compound level in rat liver compared with choline supplemented diet. I-compound levels were reduced after multi-doses of carbon tetrachloride (CCl$\sb4$) exposure in rats and single dose exposure in mice. An inverse relationship was observed between I-compound level and DNA replication rate. CCl$\sb4$-related DNA adduct was detected in mice liver and intensities of some I-spots were enhanced 24 h after a single dose exposure.^ The mechanisms and explanations of these observations will be discussed. I-compounds are potentially useful indicators in carcinogenesis studies. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Choline and betaine are important methyl donors that contribute to protein and phospholipid synthesis and DNA methylation. They can either be obtained through diet or synthesized de novo. Evidence from human and animal research indicates that choline metabolic pathways may be activated during a variety of diseases, including cancer. Studies have been conducted to investigate the role of dietary intake of choline and betaine on cancers, but results vary among studies by cancer types, and no such study had been conducted for lung cancer. We conducted a case-control study to explore the association between choline and betaine dietary intake and lung cancer. A total of 2807 cases and 2919 controls were included in the study. After adjusting for total calorie intake, age, sex, race and smoking status, multivariable logistic regression analysis revealed a significant negative association between choline/betaine intake and lung cancer. Specifically, we observed that higher choline intake was associated with reduced lung cancer odds, and the association did not differ significantly by smoking status. A similar negative trend was observed in the association between betaine intake and lung cancer after adjusting for total calorie intake, age, sex, smoking status, race, and pack-years of smoking. However, this association was strongly affected by smoking. No significant association was observed with increased betaine intake and lung cancer among never smokers, but higher betaine intake was strongly associated with reduced lung cancer odds among smokers, and lower odds ratios were observed among current smokers than among former smokers. Our results suggest that high intake of choline may be protective for lung cancer independent of smoking status, while high betaine intake may mitigate the adverse effect of smoking on lung cancer, and help prevent lung cancer among smokers.^