4 resultados para CEREBRAL HEMISPHERE REGULATION

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rheoencephalogram (REG) is the change in the electrical impedance of the head that occurs with each heart beat. Without knowledge of the relationship between cerebral blood flow (Q) and the REG, the utility of the REG in the study of the cerebral vasculature is greatly limited. The hypothesis is that the relationship between the REG and Q when venous outflow is nonpulsatile is^ (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI)^ where K is a proportionality constant and Q is the mean Q.^ Pulsatile CBF was measured in the goat via a chronically implanted electromagnetic flowmeter. Electrodes were implanted in the ipsilateral cerebral hemisphere, and the REG was measured with a two electrode impedance plethysmograph. Measurements were made with the animal's head elevated so that venous flow pulsations were not transmitted from the heart to the cerebral veins. Measurements were made under conditions of varied cerebrovascular resistance induced by altering blood CO(,2) levels and under conditions of high and low cerebrospinal fluid pressures. There was a high correlation (r = .922-.983) between the REG calculated from the hypothesized relationship and the measured REG under all conditions.^ Other investigators have proposed that the REG results from linear changes in blood resistivity proportional to blood velocity. There was little to no correlation between the measured REG and the flow velocity ( r = .022-.306). A linear combination of the flow velocity and the hypothesized relationship between the REG and Q did not predict the measured REG significantly better than the hypothesized relationship alone in 37 out of 50 experiments.^ Jacquy proposed an index (F) of cerebral blood flow calculated from amplitudes and latencies of the REG. The F index was highly correlated (r = .929) with measured cerebral blood flow under control and hypercapnic conditions, but was not as highly correlated under conditions of hypocapnia (r = .723) and arterial hypotension (r = .681).^ The results demonstrate that the REG is not determined by mean cerebral blood flow, but by the pulsatile flow only. Thus, the utility of the REG in the determination of mean cerebral blood flow is limited. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent studies using diffusion tensor imaging (DTI) have advanced our knowledge of the organization of white matter subserving language function. It remains unclear, however, how DTI may be used to predict accurately a key feature of language organization: its asymmetric representation in one cerebral hemisphere. In this study of epilepsy patients with unambiguous lateralization on Wada testing (19 left and 4 right lateralized subjects; no bilateral subjects), the predictive value of DTI for classifying the dominant hemisphere for language was assessed relative to the existing standard-the intra-carotid Amytal (Wada) procedure. Our specific hypothesis is that language laterality in both unilateral left- and right-hemisphere language dominant subjects may be predicted by hemispheric asymmetry in the relative density of three white matter pathways terminating in the temporal lobe implicated in different aspects of language function: the arcuate (AF), uncinate (UF), and inferior longitudinal fasciculi (ILF). Laterality indices computed from asymmetry of high anisotropy AF pathways, but not the other pathways, classified the majority (19 of 23) of patients using the Wada results as the standard. A logistic regression model incorporating information from DTI of the AF, fMRI activity in Broca's area, and handedness was able to classify 22 of 23 (95.6%) patients correctly according to their Wada score. We conclude that evaluation of highly anisotropic components of the AF alone has significant predictive power for determining language laterality, and that this markedly asymmetric distribution in the dominant hemisphere may reflect enhanced connectivity between frontal and temporal sites to support fluent language processes. Given the small sample reported in this preliminary study, future research should assess this method on a larger group of patients, including subjects with bi-hemispheric dominance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cytochrome P450 (P450) monooxygenase system plays a major role in metabolizing a wide variety of xenobiotic as well as endogenous compounds. In performing this function, it serves to protect the body from foreign substances. However, in a number of cases, P450 activates procarcinogens to cause harm. In most animals, the highest level of activity is found in the liver. Virtually all tissues demonstrate P450 activity, though, and the role of the P450 monooxygenase system in these other organs is not well understood. In this project I have studied the P450 system in rat brain; purifying NADPH-cytochrome P450 reductase (reductase) from that tissue. In addition, I have examined the distribution and regulation of expression of reductase and P450 in various anatomical regions of the rat brain.^ NADPH-cytochrome P450 reductase was purified to apparent homogeneity and cytochrome P450 partially purified from whole rat brain. Purified reductase from brain was identical to liver P450 reductase by SDS-PAGE and Western blot techniques. Kinetic studies utilizing cerebral P450 reductase reveal Km values in close agreement with those determined with enzyme purified from rat liver. Moreover, the brain P450 reductase was able to function successfully in a reconstituted microsomal system with partially purified brain cytochrome P450 and with purified hepatic P4501A1 as measured by 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation. These results indicate that the reductase and P450 components may interact to form a competent drug metabolism system in brain tissue.^ Since the brain is not a homogeneous organ, dependent upon the well orchestrated interaction of numerous parts, pathology in one nucleus may have a large impact upon its overall function. Hence, the anatomical distribution of the P450 monooxygenase system in brain is important in elucidating its function in that organ. Related to this is the regulation of P450 expression in brain. In order to study these issues female rats--both ovariectomized and not--were treated with a number of xenobiotic compounds and sex steroids. The brains from these animals were dissected into 8 discrete regions and the presence and relative level of message for P4502D and reductase determined using polymerase chain reaction. Results of this study indicate the presence of mRNA for reductase and P4502D isoforms throughout the rat brain. In addition, quantitative PCR has allowed the determination of factors affecting the expression of message for these enzymes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CYP4F enzymes metabolize endogenous molecules including arachidonic acid, leukotrienes and prostaglandins. The involvement of these eisosanoids in inflammation has led to the hypothesis that CYP4Fs may modulate inflammatory conditions after traumatic brain injury (TBI). In rat, TBI elicited changes in mRNA expression of CYP4Fs as a function of time in the cerebrum region. These changes in CYP4F mRNA levels inversely correlated with the cerebral leukotriene B4 (LTB4) level following injury at the same time points. TBI also resulted in changes in CYP4F protein expression and localization around the injury site, where CYP4F1 and CYP4F6 immunoreactivity increased in surrounding astrocytes and CYP4F4 immunoreactivity shifted from endothelia of cerebral vessels to astrocytes. The study with rat primary astrocytes indicated that pro-inflammatory cytokines TNFα and IL-1β could affect the transcription of CYP4Fs to a certain degree, whereas the changing pattern in the primary astrocytes appeared to be different from that in the in vivo TBI model.^ In addition, the regulation of CYP4F genes has been an unsolved issue although factors including cytokines and fatty acids appear to affect CYP4Fs expression in multiple models. In this project, HaCaT cells were used as an in vitro cellular model to define signaling pathways involved in the regulation of human CYP4F genes. Retinoic acids inhibited CYP4F11 expression, whereas cytokines TNFα and IL-1β induced transcription of CYP4F11 in HaCaT cells. The induction of CYP4F11 by both cytokines could be blocked by a JNK specific inhibitor, indicating the involvement of the JNK pathway in the up-regulation of CYP4F11. Retinoic acids are known to function in gene regulation through nuclear receptors RARs and RXRs. The RXR agonist LG268 greatly induced transcription of CYP4F11, whereas RAR agonist TTNPB obviously inhibited CYP4F11 transcription, indicating that the down-regulation of CYP4F11 by retinoic acid was mediated by RARs, and that inhibition of CYP4F11 by retinoic acid may also be related to the competition for RXR receptors. Thus, the CYP4F11 gene is regulated by signaling pathways including the RXR pathway and the JNK pathway. In contrast, the regulation mechanism of other CYP4Fs by retinoic acids appears to be different from that of CYP4F11.^