2 resultados para CART

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Altering the number of surface receptors can rapidly modulate cellular responses to extracellular signals. Some receptors, like the transferrin receptor (TfR), are constitutively internalized and recycled to the plasma membrane. Other receptors, like the epidermal growth factor receptor (EGFR), are internalized after ligand binding and then ultimately degraded in the lysosome. Routing internalized receptors to different destinations suggests that distinct molecular mechanisms may direct their movement. Here, we report that the endosome-associated protein hrs is a subunit of a protein complex containing actinin-4, BERP, and myosin V that is necessary for efficient TfR recycling but not for EGFR degradation. The hrs/actinin-4/BERP/myosin V (CART [cytoskeleton-associated recycling or transport]) complex assembles in a linear manner and interrupting binding of any member to its neighbor produces an inhibition of transferrin recycling rate. Disrupting the CART complex results in shunting receptors to a slower recycling pathway that involves the recycling endosome. The novel CART complex may provide a molecular mechanism for the actin-dependence of rapid recycling of constitutively recycled plasma membrane receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone morphogenesis is a complex biological process. The multistep process of chondrogenesis is the most important aspect of endochondral bone formation. To study the mechanisms which control this multistep pathway of chondrogenesis during embryonic development, I started by isolating cDNAs encoding novel transcriptional factors from chondrocytes. Several such cDNAs encoding putative homeoproteins were identified from a rat chondrosarcoma cDNA preparation. I have been concentrating on characterizing two of these cDNAs. The deduced amino acid sequence of the first homeoprotein, Cart-1, contains a prd-type homeodomain. Northern hybridization and RNase protection analysis revealed that Cart-1 RNAs were present at high levels in a well differentiated rat chondrosarcoma tumor and in a cell line derived from this tumor. Cart-1 transcripts were also detected in primary chondrocytes, but not in numerous other cell types except very low levels in testis. In situ hybridization of rat embryos at different stages of development revealed relatively high levels of Cart-1 RNAs in prechondrocytic mesenchymal cells and in early chondrocytes of cartilage primordia. It is speculated that Cart-1 might play an important role in chondrogenesis. The second putative homeoprotein, rDlx, contains a Distal-less-like homeodomain. rDlx RNAs were also present at high levels in the rat chondrosarcoma tumor and in the cell line derived from this tumor. In situ hybridization of rat embryos revealed high levels of rDlx transcripts in the developing cartilages and perichondria of mature cartilages. rDlx transcripts were also detected in a number of nonchondrogenic tissues such as forebrain, otic vesicles, olfactory epithelia, apical ectodermal ridge (AER) of limb buds, the presumptive Auerbach ganglia of gastrointestinal tract. The unique expression pattern of rDlx suggests that it might play important roles in chondrogenesis and other aspects of embryogenesis. ^