4 resultados para CAM-B3LYP*

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complementary and alternative medicine (CAM) use is growing rapidly. As CAM is relatively unregulated, it is important to evaluate the type and availability of CAM information. The goal of this study is to deter-mine the prevalence, content and readability of online CAM information based on searches for arthritis, diabetes and fibromyalgia using four common search engines. Fifty-eight of 599 web pages retrieved by a "condition search" (9.6%) were CAM-oriented. Of 216 CAM pages found by the "condition" and "condition + herbs" searches, 78% were authored by commercial organizations, whose pur-pose involved commerce 69% of the time and 52.3% had no references. Although 98% of the CAM information was intended for consumers, the mean read-ability was at grade level 11. We conclude that consumers searching the web for health information are likely to encounter consumer-oriented CAM advertising, which is difficult to read and is not supported by the conventional literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurogranin (Ng) is a postsynaptic IQ-motif containing protein that accelerates Ca(2+) dissociation from calmodulin (CaM), a key regulator of long-term potentiation and long-term depression in CA1 pyramidal neurons. The exact physiological role of Ng, however, remains controversial. Two genetic knockout studies of Ng showed opposite outcomes in terms of the induction of synaptic plasticity. To understand its function, we test the hypothesis that Ng could regulate the spatial range of action of Ca(2+)/CaM based on its ability to accelerate the dissociation of Ca(2+) from CaM. Using a mathematical model constructed on the known biochemistry of Ng, we calculate the cycle time that CaM molecules alternate between the fully Ca(2+) saturated state and the Ca(2+) unbound state. We then use these results and include diffusion of CaM to illustrate the impact that Ng has on modulating the spatial profile of Ca(2+)-saturated CaM within a model spine compartment. Finally, the first-passage time of CaM to transition from the Ca(2+)-free state to the Ca(2+)-saturated state was calculated with or without Ng present. These analyses suggest that Ng regulates the encounter rate between Ca(2+) saturated CaM and its downstream targets during postsynaptic Ca(2+) transients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-CAM 105 has been identified as a cell adhesion molecule (CAM) based on the ability of monospecific and monovalent anti-cell-CAM 105 antibodies to inhibit the reaggregation of rat hepatocytes. Although one would expect to find CAMs concentrated in the lateral membrane domain where adhesive interactions predominate, immunofluorescence analysis of rat liver frozen sections revealed that cell-CAM 105 was present exclusively in the bile canalicular (BC) domain of the hepatocyte. To more precisely define the in situ localization of cell-CAM 105, immunoperoxidase and electron microscopy were used to analyze intact and mechanically dissociated fixed liver tissue. Results indicate that although cell-CAM 105 is apparently restricted to the BC domain in situ, it can be detected in the pericanalicular region of the lateral membranes when accessibility to lateral membranes is provided by mechanical dissociation. In contrast, when hepatocytes were labeled following incubation in vitro under conditions used during adhesion assays, cell-CAM 105 had redistributed to all areas of the plasma membrane. Immunofluorescence analysis of primary hepatocyte cultures revealed that cell-CAM 105 and two other BC proteins were localized in discrete domains reminscent of BC while cell-CAM 105 was also present in regions of intercellular contact. These results indicate that the distribution of cell-CAM 105 under the experimental conditions used for cell adhesion assays differs from that in situ and raises the possibility that its adhesive function may be modulated by its cell surface distribution. The implications of these and other findings are discussed with regard to a model for BC formation.^ Analysis of molecular events involved in BC formation would be accelerated if an in vitro model system were available. Although BC formation in culture has previously been observed, repolarization of cell-CAM 105 and two other domain-specific membrane proteins was incomplete. Since DMSO had been used by Isom et al. to maintain liver-specific gene expression in vitro, the effect of this differentiation system on the polarity of these membrane proteins was examined. Based on findings presented here, DMSO apparently prolongs the expression and facilitates polarization of hepatocyte membrane proteins in vitro. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium/calmodulin-dependent protein kinase II (CaM kinase) is a multifunctional Ser/Thr protein kinase, that is highly enriched in brain and is involved in regulating many aspects of neuronal function. We observed that forebrain CaM kinase from crude homogenates, cytosolic fractions and purified preparations inactivates and translocates into the particulate fraction following autophosphorylation. Using purified forebrain CaM kinase as well as recombinant $\alpha$ isozyme, we determined that the formation of particulate enzyme was due to enzyme self-association. The conditions of autophosphorylation determine whether enzyme self-association and/or inactivation will occur. Self-association of CaM kinase is sensitive to pH, ATP concentration, and enzyme autophosphorylation. This process is prevented by saturating concentrations of ATP. However, in limiting ATP, pH is the dominant factor, and enzyme self-association occurs at pH values $\rm{<}7.0.$ Site-specific mutants were produced by substituting Ala for Thr286, Thr253, or Thr305,306 to determine whether these sites of autophosphorylation affect enzyme inactivation and self-association. The only mutation that influenced these processes was Ala286, which removed the protective effect afforded by autophosphorylation in saturating ATP. Enzyme inactivation occurs in the presence and absence of self-association and appears predominantly sensitive to nucleotide concentration, because saturating concentrations of $\rm Mg\sp{2+}/ADP$ or $\rm Mg\sp{2+}/ATP$ prevent this process. These data implicate the ATP binding pocket in both inactivation and self-association. We also observed that select peptide substrates and peptide inhibitors modeled after the autoregulatory domain of CaM kinase prevented these processes. The $\alpha$ and $\beta$ isozymes of CaM kinase were characterized independently, and were observed to exhibit differences in both enzyme inactivation and self-association. The $\beta$ isozyme was less sensitive to inactivation, and was never observed to self-associate. Biophysical characterization, and transmission electron microscopy coupled with image analysis indicated both isozymes were multimeric, however, the $\alpha$ and $\beta$ isozymes appeared structurally different. We hypothesize that the $\alpha$ subunit of CaM kinase plays both a structural and enzymatic role, and the $\beta$ subunit plays an enzymatic role. The ramifications for the functional differences observed for inactivation and self-association are discussed based on potential structural differences and autoregulation of the $\alpha$ and $\beta$ isozymes in both calcium-induced physiological and pathological processes. ^