4 resultados para CADMIUM TELLURIDE DETECTORS

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated characteristics of optically stimulated luminescent detectors (OSLDs) in protons, allowing comparison to thermoluminescent detectors, and to be implemented into the Radiological Physics Center’s (RPC) remote audit quality assurance program for protons, and for remote anthropomorphic phantom irradiations. The OSLDs used were aluminum oxide (Al2O3:C) nanoDots from Landauer, Inc. (Glenwood, Ill.) measuring 10x10x2 mm3. A square, 20(L)x20(W)x0.5(H) cm3 piece of solid water was fabricated with pockets to allow OSLDs and TLDs to be irradiated simultaneously and perpendicular to the beam. Irradiations were performed at 5cm depth in photons, and in the center of a 10 cm SOBP in a 200MeV proton beam. Additionally, the Radiological Physics Center’s anthropomorphic pelvic phantom was used to test the angular dependence of OSLDs in photons and protons. A cylindrical insert in the phantom allows the dosimeters to be rotated to any angle with a fixed gantry angle. OSLDs were irradiated at 12 angles between 0 and 360 degrees. The OSLDs were read out with a MicroStar reader from Landauer, Inc. Dose response indicates that at angles where the dosimeter is near parallel with the radiation beam response is reduced slightly. Measurements in proton beams do not show significant angular dependence. Post-irradiation fading of OSLDs was studied in proton beams to determine if the fading was different than that of photons. The fading results showed no significant difference from results in photon beams. OSLDs and TLDs are comparable within 3% in photon beams and a correction factor can be posited for proton beams. With angular dependence characteristics defined, OSLDs can be implemented into multiple-field treatment plans in photons and protons and used in the RPC’s quality assurance program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological studies have shown cadmium to induce cancer in humans, while experimental studies have proven this metal to be a potent tumor inducer in animals. However, cadmium appears nonmutagenic in most prokaryotic and eukaryotic mutagenesis assays. In this study, we present the identification of mutations in normal rat kidney cells infected with the mutant MuSVts110 retrovirus (6m2 cells) as a result of treatment with cadmium chloride. The detection of these mutations was facilitated by the use of a novel mutagenesis assay established in this laboratory. The 6m2 reversion assay is a positive selection system based on the conditional expression of the MuSVts110 v-mos gene. In MuSVts110 the gag and mos genes are fused out of frame, thus the translation of the v-mos sequence requires a frameshift in the genomic RNA. In 6m2 cells this frameshift is accomplished by the temperature-dependent splicing of the primary MuSVts110 transcript. Splicing of MuSVts110, which is mediated by cis-acting sequences, occurs when 6m2 cells are grown at 33$\sp\circ$C and below, but not at 39$\sp\circ$C. Therefore, 6m2 cells appear transformed at low growth temperatures, but take on a morphologically normal appearance when grown at high temperatures. The treatment of 6m2 cells with cadmium chloride resulted in the outgrowth of a number of cells that reverted to the transformed state at high growth temperatures. Analysis of the viral proteins expressed in these cadmium-induced 6m2 revertants suggested that they contained mutations in their MuSVts110 DNA. Sequencing of the viral DNA from three revertants that constitutively expressed the P85$\sp{gag{-}mos}$ transforming protein revealed five different mutations. The Cd-B2 revertant contained three of those mutations: an A-to-G transition 48 bases downstream of the MuSVts110 3$\sp\prime$ splice site, plus a G-to-T and an A-to-T transversion 84 and 100 bases downstream of the 5$\sp\prime$ splice site, respectively. The Cd-15-5 revertant also contained a point mutation, a T-to-C transition 46 bases downstream of the 5$\sp\prime$ splice site, while Cd-10-5 contained a three base deletion of MuSVts110 11 bases upstream of the 3$\sp\prime$ splice site. A fourth revertant, Cd-10, expressed a P100$\sp{gag{-}mos}$ transforming protein, and was found to have a two base deletion. This deletion accomplished the frameshift necessary for v-mos expression, but did not alter MuSVts110 RNA splicing and the expression of p85$\sp{gag{-}mos}.$ Lastly, sequencing of the MuSVts110 DNA from three spontaneous revertants revealed the same G to T transversion in each one. This was the same mutation that was found in the Cd-B2 revertant. These findings provide the first example of mutations resulting from exposure to cadmium and suggest, by the difference in each mutation, the complexity of the mechanism utilized by cadmium to induce DNA damage. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Radiological Physics Center (RPC) uses both on-site and remote reviews to credential institutions for participation in clinical trials. Anthropomorphic quality assurance (QA) phantoms are one tool the RPC uses to remotely audit institutions, which include thermoluminescent dosimeters (TLDs) and radiochromic film. The RPC desires to switch from TLD as the absolute dosimeter in the phantoms, to optically stimulated luminescent dosimeters (OSLDs), but a problem lies in the angular dependence exhibited by the OSLD. The purpose of this study was to characterize the angular dependence of OSLD and establish a correction factor if necessary, to provide accurate dosimetric measurements as a replacement for TLD in the QA phantoms. A 10 cm diameter high-impact polystyrene spherical phantom was designed and constructed to hold an OSLD to study the angular response of the dosimeter under the simplest of circumstances for both coplanar and non-coplanar treatment deliveries. OSLD were irradiated in the spherical phantom, and the responses of the dosimeter from edge-on angles were normalized to the response when irradiated with the beam incident normally on the surface of the dosimeter. The average normalized response was used to establish an angular correction factor for 6 MV and 18 coplanar treatments, and for 6 MV non-coplanar treatments specific to CyberKnife. The RPC pelvic phantom dosimetry insert was modified to hold OSLD, in addition to the TLD, adjacent to the planes of film. Treatment plans of increasing angular beam delivery were developed, three in Pinnacle v9.0 (4-field box, IMRT, and VMAT) and one in Accuray’s MultiPlan v3.5.3 (CyberKnife). The plans were delivered to the pelvic phantom containing both TLD and OSLD in the target volume. The pelvic phantom was also sent to two institutions to be irradiated as trials, one delivering IMRT, and the other a CyberKnife treatment. For the IMRT deliveries and the two institution trials, the phantom also included film in the sagittal and coronal planes. The doses measured from the TLD and OSLD were calculated for each irradiation, and the angular correction factors established from the spherical phantom irradiations were applied to the OSLD dose. The ratio of the TLD dose to the angular corrected OSLD dose was calculated for each irradiation. The corrected OSLD dose was found to be within 1% of the TLD measured dose for all irradiations, with the exception of the in-house CyberKnife deliveries. The films were normalized to both TLD measured dose and the corrected OSLD dose. Dose profiles were obtained and gamma analysis was performed using a 7%/4 mm criteria, to compare the ability of the OSLD, when corrected for the angular dependence, to provide equivalent results to TLD. The results of this study indicate that the OSLD can effectively be used as a replacement for TLD in the RPC’s anthropomorphic QA phantoms for coplanar treatment deliveries when a correction is applied for the dosimeter’s angular dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined effects of salinity, temperature and cadmium stress on survival and adaptation through cadmium-binding protein (CdBP) accumulation were studied in the grass shrimp, Palaemonetes pugio. In 96-hour bioassays, shrimp were exposed to zero or one of three levels of cadmium, under one of six different salinity (15, 25, or 35$\perthous$) and temperature (20 or 30$\sp\circ$C) regimes. CdBP concentrations were quantified in survivors from the 24 exposure groups. Salinity and temperature did not affect survivorship unless the shrimp were also exposed to cadmium. Grass shrimp were most sensitive to cadmium at low salinity-high temperature, and least sensitive at high salinity-low temperature. The incidence of cadmium-associated black lesions in gill tissue was influenced by salinity and temperature stress. P. pugio produced a 10,000 dalton metallothionein-like CdBP when exposed to at least 0.1 mg Cd$\sp{2+}$/L for 96 hours. Accumulation of CdBP was increased with increases in the exposure cadmium level, increases in temperature and decreases in salinity, independently and in conjunction with one another. Maximum CdBP concentrations occurred in grass shrimp that survived the salinity-temperature-cadmium conditions creating maximum stress as measured by highest mortality, not necessarily in shrimp exposed to the highest cadmium levels. The potential utility of this method as a monitor of physiological stress in estuarine biota inhabiting metal-polluted environments is discussed. ^