3 resultados para C-70
em DigitalCommons@The Texas Medical Center
Resumo:
Contraction of vertebrate cardiac muscle is regulated by the binding of Ca$\sp{2+}$ to the troponin C (cTnC) subunit of the troponin complex. In this study, we have used site-directed mutagenesis and a variety of assay techniques to explore the functional roles of regions in cTnC, including Ca$\sp{2+}$/Mg$\sp{2+}$-binding sites III and IV, the functionally inactive site I, the N-terminal helix, the N-terminal hydrophobic pocket and the two cysteine residues with regard to their ability to form disulfide bonds. Conversion of the first Ca$\sp{2+}$ ligand from Asp to Ala inactivated sites III and IV and decreased the apparent affinity of cTnC for the thin filament. Conversion of the second ligand from Asn to Ala also inactivated these sites in the free protein but Ca$\sp{2+}$-binding was recovered upon association with troponin I and troponin T. The Ca$\sp{2+}$-concentrations required for tight thin filament-binding by proteins containing second-ligand mutations were significantly greater than that required for the wild-type protein. Mutation of site I such that the primary sequence was that of an active site with the first Ca$\sp{2+}$ ligand changed from Asp to Ala resulted in a 70% decrease in maximal Ca$\sp{2\sp+}$ dependent ATPase activity in both cardiac and fast skeletal myofibrils. Thus, the primary sequence of the inactive site I in cTnC is functionally important. Major changes in the sequence of the N-terminus had little effect on the ability of cTnC to recover maximal activity but deletion of the first nine residues resulted in a 60 to 80% decrease in maximal activity with only a minor decrease in the pCa$\sb{50}$ of activation, suggesting that the N-terminal helix must be present but that a specific sequence is not required. The formation of an inter- or intramolecular disulfide bonds caused the exposure of hydrophobic surfaces on cTnC and rendered the protein Ca$\sp{2+}$ independent. Finally, elution patterns from a hydrophobic interactions column suggest that cTnC undergoes a significant change in hydrophobicity upon Ca$\sp{2+}$ binding, the majority of which is caused by site II. These latter data show an interesting correlation between exposure of hydrophobic surfaces on and activation of cTnC. Overall, these results represent significant progress toward the elucidation of the functional roles of a variety of structural regions in cTnC. ^
Resumo:
The sigma (σ) subunit of eubacterial RNA polymerase is essential for initiation of transcription at promoter sites. σ factor directs the RNA polymerase core subunits ( a2bb′ ) to the promoter consensus elements and thereby confers selectivity for transcription initiation. The N-terminal domain (region 1.1) of Escherichia coli σ70 has been shown to inhibit DNA binding by the C-terminal DNA recognition domains when σ is separated from the core subunits. Since DNA recognition by RNA polymerase is the first step in transcription, it seemed plausible that region 1 might also influence initiation processes subsesquent to DNA binding. This study explores the functional roles of regions 1.1 and 1.2 of σ70 in transcription initiation. Analysis in vitro of the transcriptional properties of a series of N-terminally truncated σ70 derivates revealed a critical role for region 1.1 at several key stages of initiation. Deletion of the first 75 to 100 amino acids of σ70 (region 1.1) resulted in both a slow rate of transition from a closed promoter complex to a DNA-strand-separated open complex, as well as a reduced efficiency of transition from the open complex to a transcriptionally active open complex. These effects were partially reversed by addition of a polypeptide containing region 1.1 in trans. Therefore, region 1.1 not only modulates DNA binding but is important for efficient transcription initiation, once a closed complex has formed. A deletion of the first 133 amino acids which removes both regions 1.1 and 1.2 resulted in arrest of initiation at the earliest closed complex, suggesting that region 1.2 is required for open complex formation. Mutagenesis of region 1.1 uncovered a mechanistically important role for isoleucine at position 53 (I53). Substitution of I53 with alanine created a σ factor that associated with the core subunits to form holoenzyme, but the holoenzyme was severely deficient for promoter binding. The I53A phenotype was suppressed in vivo by truncation of five amino acids from the C-terminus of σ 70. These observations are consistent with a model in which σ 70I53A fails to undergo a critical conformational change upon association with the core subunits, which is needed to expose the DNA-binding domains and confer promoter recognition capability upon holoenzyme. To understand the basis of the autoinhibitory properties of the σ70 N-terminal domain, in the absence of core RNA polymerase, a preliminary physical assessment of the interdomain interactions within the σ70 subunit was launched. Results support a model in which N-terminal amino acids are in close proximity to residues in the C-terminus of the σ 70 polypeptide. ^
Resumo:
Group B Streptococcus (GBS) is a leading cause of life-threatening infection in neonates and young infants, pregnant women, and non-pregnant adults with underlying medical conditions. Immunization has theoretical potential to prevent significant morbidity and mortality from GBS disease. Alpha C protein (α C), found in 70% of non-type III capsule polysaccharide group B Streptococcus, elicits antibodies protective against α C-expressing strains in experimental animals and is an appealing carrier for a GBS conjugate vaccine. We determined whether natural exposure to α C elicits antibodies in women and if high maternal α C-specific serum antibody at delivery is associated with protection against neonatal disease. An ELISA was designed to measure α C-specific IgM and IgG in human sera. A case-control design (1:3 ratio) was used to match α C-expressing GBS colonized and non-colonized women by age and compare quantified serum α C-specific IgM and IgG. Sera also were analyzed from bacteremic neonates and their mothers and from women with invasive GBS disease. Antibody concentrations were compared using t-tests on log-transformed data. Geometric mean concentrations of α C-specific IgM and IgG were similar in sera from 58 α C strain colonized and 174 age-matched non-colonized women (IgG 245 and 313 ng/ml; IgM 257 and 229 ng/ml, respectively). Delivery sera from mothers of 42 neonates with GBS α C sepsis had similar concentrations of α C-specific IgM (245 ng/ml) and IgG (371 ng/ml), but acute sera from 13 women with invasive α C-expressing GBS infection had significantly higher concentrations (IgM 383 and IgG 476 ng/ml [p=0.036 and 0.038, respectively]). Convalescent sera from 5 of these women 16-49 days later had high α C-specific IgM and IgG concentrations (1355 and 4173 ng/ml, respectively). In vitro killing of α C-expressing GBS correlated with total α C-specific antibody concentration. Invasive disease but not colonization elicits α C-specific IgM and IgG in adults. Whether α C-specific IgG induced by vaccine would protect against disease in neonates merits further investigation. ^