2 resultados para Business -- Data processing -- Management

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical Research Data Quality Literature Review and Pooled Analysis We present a literature review and secondary analysis of data accuracy in clinical research and related secondary data uses. A total of 93 papers meeting our inclusion criteria were categorized according to the data processing methods. Quantitative data accuracy information was abstracted from the articles and pooled. Our analysis demonstrates that the accuracy associated with data processing methods varies widely, with error rates ranging from 2 errors per 10,000 files to 5019 errors per 10,000 fields. Medical record abstraction was associated with the highest error rates (70–5019 errors per 10,000 fields). Data entered and processed at healthcare facilities had comparable error rates to data processed at central data processing centers. Error rates for data processed with single entry in the presence of on-screen checks were comparable to double entered data. While data processing and cleaning methods may explain a significant amount of the variability in data accuracy, additional factors not resolvable here likely exist. Defining Data Quality for Clinical Research: A Concept Analysis Despite notable previous attempts by experts to define data quality, the concept remains ambiguous and subject to the vagaries of natural language. This current lack of clarity continues to hamper research related to data quality issues. We present a formal concept analysis of data quality, which builds on and synthesizes previously published work. We further posit that discipline-level specificity may be required to achieve the desired definitional clarity. To this end, we combine work from the clinical research domain with findings from the general data quality literature to produce a discipline-specific definition and operationalization for data quality in clinical research. While the results are helpful to clinical research, the methodology of concept analysis may be useful in other fields to clarify data quality attributes and to achieve operational definitions. Medical Record Abstractor’s Perceptions of Factors Impacting the Accuracy of Abstracted Data Medical record abstraction (MRA) is known to be a significant source of data errors in secondary data uses. Factors impacting the accuracy of abstracted data are not reported consistently in the literature. Two Delphi processes were conducted with experienced medical record abstractors to assess abstractor’s perceptions about the factors. The Delphi process identified 9 factors that were not found in the literature, and differed with the literature by 5 factors in the top 25%. The Delphi results refuted seven factors reported in the literature as impacting the quality of abstracted data. The results provide insight into and indicate content validity of a significant number of the factors reported in the literature. Further, the results indicate general consistency between the perceptions of clinical research medical record abstractors and registry and quality improvement abstractors. Distributed Cognition Artifacts on Clinical Research Data Collection Forms Medical record abstraction, a primary mode of data collection in secondary data use, is associated with high error rates. Distributed cognition in medical record abstraction has not been studied as a possible explanation for abstraction errors. We employed the theory of distributed representation and representational analysis to systematically evaluate cognitive demands in medical record abstraction and the extent of external cognitive support employed in a sample of clinical research data collection forms. We show that the cognitive load required for abstraction in 61% of the sampled data elements was high, exceedingly so in 9%. Further, the data collection forms did not support external cognition for the most complex data elements. High working memory demands are a possible explanation for the association of data errors with data elements requiring abstractor interpretation, comparison, mapping or calculation. The representational analysis used here can be used to identify data elements with high cognitive demands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. The central objective of this study was to systematically examine the internal structure of multihospital systems, determining the management principles used and the performance levels achieved in medical care and administrative areas.^ The Universe. The study universe consisted of short-term general American hospitals owned and operated by multihospital corporations. Corporations compared were the investor-owned (for-profit) and the voluntary multihospital systems. The individual hospital was the unit of analysis for the study.^ Theoretical Considerations. The contingency theory, using selected aspects of the classical and human relations schools of thought, seemed well suited to describe multihospital organization and was used in this research.^ The Study Hypotheses. The main null hypotheses generated were that there are no significant differences between the voluntary and the investor-owned multihospital sectors in their (1) hospital structures and (2) patient care and administrative performance levels.^ The Sample. A stratified random sample of 212 hospitals owned by multihospital systems was selected to equally represent the two study sectors. Of the sampled hospitals approached, 90.1% responded.^ The Analysis. Sixteen scales were constructed in conjunction with 16 structural variables developed from the major questions and sub-items of the questionnaire. This was followed by analysis of an additional 7 structural and 24 effectiveness (performance) measures, using frequency distributions. Finally, summary statistics and statistical testing for each variable and sub-items were completed and recorded in 38 tables.^ Study Findings. While it has been argued that there are great differences between the two sectors, this study found that with a few exceptions the null hypotheses of no difference in organizational and operational characteristics of non-profit and for-profit hospitals was accepted. However, there were several significant differences found in the structural variables: functional specialization, and autonomy were significantly higher in the voluntary sector. Only centralization was significantly different in the investor owned. Among the effectiveness measures, occupancy rate, cost of data processing, total manhours worked, F.T.E. ratios, and personnel per occupied bed were significantly higher in the voluntary sector. The findings indicated that both voluntary and for-profit systems were converging toward a common hierarchical corporate management approach. Factors of size and management style may be better descriptors to characterize a specific multihospital group than its profit or nonprofit status. (Abstract shortened with permission of author.) ^