2 resultados para Broca do estipe do coqueiro
em DigitalCommons@The Texas Medical Center
Resumo:
Recent studies using diffusion tensor imaging (DTI) have advanced our knowledge of the organization of white matter subserving language function. It remains unclear, however, how DTI may be used to predict accurately a key feature of language organization: its asymmetric representation in one cerebral hemisphere. In this study of epilepsy patients with unambiguous lateralization on Wada testing (19 left and 4 right lateralized subjects; no bilateral subjects), the predictive value of DTI for classifying the dominant hemisphere for language was assessed relative to the existing standard-the intra-carotid Amytal (Wada) procedure. Our specific hypothesis is that language laterality in both unilateral left- and right-hemisphere language dominant subjects may be predicted by hemispheric asymmetry in the relative density of three white matter pathways terminating in the temporal lobe implicated in different aspects of language function: the arcuate (AF), uncinate (UF), and inferior longitudinal fasciculi (ILF). Laterality indices computed from asymmetry of high anisotropy AF pathways, but not the other pathways, classified the majority (19 of 23) of patients using the Wada results as the standard. A logistic regression model incorporating information from DTI of the AF, fMRI activity in Broca's area, and handedness was able to classify 22 of 23 (95.6%) patients correctly according to their Wada score. We conclude that evaluation of highly anisotropic components of the AF alone has significant predictive power for determining language laterality, and that this markedly asymmetric distribution in the dominant hemisphere may reflect enhanced connectivity between frontal and temporal sites to support fluent language processes. Given the small sample reported in this preliminary study, future research should assess this method on a larger group of patients, including subjects with bi-hemispheric dominance.
Resumo:
This research demonstrates cholinergic modulation of thalamic input into the limbic cortex. A projection from the mediodorsal thalamus (MD) to the anterior cingulate cortex was defined anatomically and physiologically. Injections of horse-radish peroxidase into the anterior cingulate cortex labels neurons in the lateral, parvocellular, region of MD. Electrical Stimulation of this area produces a complex field potential in the anterior cingulate cortex which was further characterized by current density analysis and single cell recordings.^ The monsynaptic component of the response was identified as a large negative field which is maximal in layer IV of the anterior cingulate cortex. This response shows remarkable tetanic potentiation of frequencies near 7 Hz. During a train of 50 or more stimuli, the response would grow quickly and remain at a fairly stable potentiated level throughout the train.^ Cholinergic modulation of this thalamic response was demonstrated by iontophoretic application of the cholinergic agonist carbachol decreased the effectiveness of the thalamic imput by rapidly attenuation the response during a train of stimuli. The effect was apparently mediated by muscarinic receptors since the effect of carbachol was blocked by atropine but not by hexamethonium.^ To determine the source of the cingulate cortex cholinergic innervation, lesions were made in the anterior and medial thalamus and in the nucleus of the diagonal band of Broca. The effects of these lesions on choline acetyltranferase activity in the cingulate cortex were determined by a micro-radio-enzymatical assay. Only the lesions of the nucleus of the diagonal band significantly decreased the choline acetyltransferase activity in the cingulate cortex regions. Therefore, the diagonal band appears to be a major source of sensory cholinergic innervation and may be involved in gating of sensory information from the thalamus into the limbic cortex. Attempts to modulate the cingulate response to MD stimulation with electrical stimulation of the diagonal band, however were not successful.^