2 resultados para Branch and bounds

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A patient classification system was developed integrating a patient acuity instrument with a computerized nursing distribution method based on a linear programming model. The system was designed for real-time measurement of patient acuity (workload) and allocation of nursing personnel to optimize the utilization of resources.^ The acuity instrument was a prototype tool with eight categories of patients defined by patient severity and nursing intensity parameters. From this tool, the demand for nursing care was defined in patient points with one point equal to one hour of RN time. Validity and reliability of the instrument was determined as follows: (1) Content validity by a panel of expert nurses; (2) predictive validity through a paired t-test analysis of preshift and postshift categorization of patients; (3) initial reliability by a one month pilot of the instrument in a practice setting; and (4) interrater reliability by the Kappa statistic.^ The nursing distribution system was a linear programming model using a branch and bound technique for obtaining integer solutions. The objective function was to minimize the total number of nursing personnel used by optimally assigning the staff to meet the acuity needs of the units. A penalty weight was used as a coefficient of the objective function variables to define priorities for allocation of staff.^ The demand constraints were requirements to meet the total acuity points needed for each unit and to have a minimum number of RNs on each unit. Supply constraints were: (1) total availability of each type of staff and the value of that staff member (value was determined relative to that type of staff's ability to perform the job function of an RN (i.e., value for eight hours RN = 8 points, LVN = 6 points); (2) number of personnel available for floating between units.^ The capability of the model to assign staff quantitatively and qualitatively equal to the manual method was established by a thirty day comparison. Sensitivity testing demonstrated appropriate adjustment of the optimal solution to changes in penalty coefficients in the objective function and to acuity totals in the demand constraints.^ Further investigation of the model documented: correct adjustment of assignments in response to staff value changes; and cost minimization by an addition of a dollar coefficient to the objective function. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When choosing among models to describe categorical data, the necessity to consider interactions makes selection more difficult. With just four variables, considering all interactions, there are 166 different hierarchical models and many more non-hierarchical models. Two procedures have been developed for categorical data which will produce the "best" subset or subsets of each model size where size refers to the number of effects in the model. Both procedures are patterned after the Leaps and Bounds approach used by Furnival and Wilson for continuous data and do not generally require fitting all models. For hierarchical models, likelihood ratio statistics (G('2)) are computed using iterative proportional fitting and "best" is determined by comparing, among models with the same number of effects, the Pr((chi)(,k)('2) (GREATERTHEQ) G(,ij)('2)) where k is the degrees of freedom for ith model of size j. To fit non-hierarchical as well as hierarchical models, a weighted least squares procedure has been developed.^ The procedures are applied to published occupational data relating to the occurrence of byssinosis. These results are compared to previously published analyses of the same data. Also, the procedures are applied to published data on symptoms in psychiatric patients and again compared to previously published analyses.^ These procedures will make categorical data analysis more accessible to researchers who are not statisticians. The procedures should also encourage more complex exploratory analyses of epidemiologic data and contribute to the development of new hypotheses for study. ^