27 resultados para Brain ischemia and reperfusion

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity and diabetes are frequently associated with cardiovascular disease. When a normal heart is subjected to brief/sublethal repetitive ischemia and reperfusion (I/R), adaptive responses are activated to preserve cardiac structure and function. These responses include but are not limited to alterations in cardiac metabolism, reduced calcium responsiveness, and induction of antioxidant enzymes. In a model of ischemic cardiomyopathy inducible by brief repetitive I/R, we hypothesized that dysregulation of these adaptive responses in diet-induced obese (DIO) mice would contribute to enhanced myocardial injury. DIO C57BL/6J mice were subjected to 15 min of daily repetitive I/R while under short-acting anesthesia, a protocol that results in the development of fibrotic cardiomyopathy. Cardiac lipids and candidate gene expression were analyzed at 3 days, and histology at 5 days of repetitive I/R. Total free fatty acids (FFAs) in the cardiac extracts of DIO mice were significantly elevated, reflecting primarily the dietary fatty acid (FA) composition. Compared with lean controls, cardiac FA oxidation (FAO) capacity of DIO mice was significantly higher, concurrent with increased expression of FA metabolism gene transcripts. Following 15 min of daily repetitive I/R for 3 or 5 days, DIO mice exhibited increased susceptibility to I/R and, in contrast to lean mice, developed microinfarction, which was associated with an exaggerated inflammatory response. Repetitive I/R in DIO mice was associated with more profound significant downregulation of FA metabolism gene transcripts and elevated FFAs and triglycerides. Maladaptive metabolic changes of FA metabolism contribute to enhanced myocardial injury in diet-induced obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is the most common demyelinating disease affecting the central nervous system. There is no cure for MS and current therapies have limited efficacy. While the majority of individuals with MS develop significant clinical disability, a subset experiences a disease course with minimal impairment even in the presence of significant apparent tissue damage on magnetic resonance imaging (MRI). The current studies combined functional MRI and diffusion tensor imaging (DTI) to elucidate brain mechanisms associated with lack of clinical disability in patients with MS. Recent evidence has implicated cortical reorganization as a mechanism to limit the clinical manifestation of the disease. Functional MRI was used to test the hypothesis that non-disabled MS patients (Expanded Disability Status Scale ≤ 1.5) show increased recruitment of cognitive control regions (dorsolateral prefrontal and anterior cingulate cortex) while performing sensory, motor and cognitive tasks. Compared to matched healthy controls, patients increased activation of cognitive control brain regions when performing non-dominant hand movements and the 2-back working memory task. Using dynamic causal modeling, we tested whether increased cognitive control recruitment is associated with alterations in connectivity in the working memory functional network. Patients exhibited similar network connectivity to that of control subjects when performing working memory tasks. We subsequently investigated the integrity of major white matter tracts to assess structural connectivity and its relation to activation and functional integration of the cognitive control system. Patients showed substantial alterations in callosal, inferior and posterior white matter tracts and less pronounced involvement of the corticospinal tracts and superior longitudinal fasciculi (SLF). Decreased structural integrity within the right SLF in patients was associated with decreased performance, and decreased activation and connectivity of the cognitive control system when performing working memory tasks. These studies suggest that patient with MS without clinical disability increase cognitive control system recruitment across functional domains and rely on preserved functional and structural connectivity of brain regions associated with this network. Moreover, the current studies show the usefulness of combining brain activation data from functional MRI and structural connectivity data from DTI to improve our understanding of brain adaptation mechanisms to neurological disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CYP4F enzymes metabolize endogenous molecules including arachidonic acid, leukotrienes and prostaglandins. The involvement of these eisosanoids in inflammation has led to the hypothesis that CYP4Fs may modulate inflammatory conditions after traumatic brain injury (TBI). In rat, TBI elicited changes in mRNA expression of CYP4Fs as a function of time in the cerebrum region. These changes in CYP4F mRNA levels inversely correlated with the cerebral leukotriene B4 (LTB4) level following injury at the same time points. TBI also resulted in changes in CYP4F protein expression and localization around the injury site, where CYP4F1 and CYP4F6 immunoreactivity increased in surrounding astrocytes and CYP4F4 immunoreactivity shifted from endothelia of cerebral vessels to astrocytes. The study with rat primary astrocytes indicated that pro-inflammatory cytokines TNFα and IL-1β could affect the transcription of CYP4Fs to a certain degree, whereas the changing pattern in the primary astrocytes appeared to be different from that in the in vivo TBI model.^ In addition, the regulation of CYP4F genes has been an unsolved issue although factors including cytokines and fatty acids appear to affect CYP4Fs expression in multiple models. In this project, HaCaT cells were used as an in vitro cellular model to define signaling pathways involved in the regulation of human CYP4F genes. Retinoic acids inhibited CYP4F11 expression, whereas cytokines TNFα and IL-1β induced transcription of CYP4F11 in HaCaT cells. The induction of CYP4F11 by both cytokines could be blocked by a JNK specific inhibitor, indicating the involvement of the JNK pathway in the up-regulation of CYP4F11. Retinoic acids are known to function in gene regulation through nuclear receptors RARs and RXRs. The RXR agonist LG268 greatly induced transcription of CYP4F11, whereas RAR agonist TTNPB obviously inhibited CYP4F11 transcription, indicating that the down-regulation of CYP4F11 by retinoic acid was mediated by RARs, and that inhibition of CYP4F11 by retinoic acid may also be related to the competition for RXR receptors. Thus, the CYP4F11 gene is regulated by signaling pathways including the RXR pathway and the JNK pathway. In contrast, the regulation mechanism of other CYP4Fs by retinoic acids appears to be different from that of CYP4F11.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results from epidemiologic studies suggest that persons working in occupations with presumed electric and magnetic field (EMF) exposures are at increased risk of brain cancer. This study utilized data from a completed, population-based, interview case-control study of central nervous system (CNS) tumors and employment in the petrochemical industry to test the hypothesis that employment in EMF-related occupations increases CNS tumor risk. A total of 375 male residents of the Texas-Louisiana Gulf Coast Area, age 20 to 79, with primary neuroglial CNS tumors diagnosed during the period 1980-84 were identified. A population-based comparison group of 450 age, race and geographically matched males was selected. Occupational histories and potential risk factor data were collected via personal interviews with study subjects or their next-of-kin.^ Adjusted odds ratios were less than 1.0 for persons ever employed in an electrical occupation (OR = 0.65; 95% CI = 0.40-1.09) or whose usual occupation was electrical (OR = 0.76; 95% CI = 0.33-1.73). Relative risk estimates did not increase significantly as time since first employment or duration of employment increased. Examination of CNS tumor risk by high (OR = 0.80), medium (OR = 0.88) and low (OR = 0.45) exposure categories for persons whose usual occupation was electrical did not indicate a dose-response pattern. In addition, the mean age of exposed cases was not significantly younger than that for unexposed cases. Analysis of risk by probability of exposure to EMFs showed non-significant elevations in the adjusted odds ratio for definite exposed workers defined by their usual occupation (OR = 1.78; 95% CI = 0.70-4.51) and ever/never employed status (OR = 1.54; 95% CI = 0.17-4.91).^ These findings suggest that employment in occupations with presumed EMF exposures does not increase CNS tumor risk as was suggested by previous investigations. The results of this study also do not support the EMF-tumor promotion hypothesis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the popularity of the positron emitting glucose analog, ($\sp{18}$F) -2-deoxy-2-fluoro-D-glucose (2FDG), for the noninvasive "metabolic imaging" of organs with positron emission tomography (PET), the physiological basis for the tracer has not been tested, and the potential of 2FDG for the rapid kinetic analysis of altered glucose metabolism in the intact heart has not been fully exploited. We, therefore, developed a quantitative method to characterize metabolic changes of myocardial glucose metabolism noninvasively and with high temporal resolution.^ The first objective of the work was to provide direct evidence that the initial steps in the metabolism of 2FDG are the same as for glucose and that 2FDG is retained by the tissue in proportion to the rate of glucose utilization. The second objective was to characterize the kinetic changes in myocardial glucose transport and phosphorylation in response to changes in work load, competing substrates, acute ischemia and reperfusion, and the addition of insulin. To assess changes in myocardial glucose metabolism isolated working rat hearts were perfused with glucose and 2FDG. Tissue uptake of 2FDG and the input function were measured on-line by external detection. The steady state rate of 2FDG phosphorylation was determined by graphical analysis of 2FDG time-activity curves.^ The rate of 2FDG uptake was linear with time and the tracer was retained in its phosphorylated form. Tissue accumulation of 2FDG decreased within seconds with a reduction in work load, in the presence of competing substrates, and during reperfusion after global ischemia. Thus, most interventions known to alter glucose metabolism induced rapid parallel changes in 2FDG uptake. By contrast, insulin caused a significant increase in 2FDG accumulation only in hearts from fasted animals when perfused at a sub-physiological work load. The mechanism for this phenomenon is not known but may be related to the existence of two different glucose transporter systems and/or glycogen metabolism in the myocardial cell.^ It is concluded that (1) 2FDG traces glucose uptake and phosphorylation in the isolated working rat heart; and (2) early and transient kinetic changes in glucose metabolism can be monitored with high temporal resolution with 2FDG and a simple positron coincidence counting system. The new method has revealed transients of myocardial glucose metabolism, which would have remained unnoticed with conventional methods. These transients are not only important for the interpretation of glucose metabolic PET scans, but also provide insights into mechanisms of glucose transport and phosphorylation in heart muscle. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine alterations in quantities and distributions of natural antimicrobials following ischemia-reperfusion injury. We hypothesized that these compounds would be upregulated in areas of small intestine where changes in permeability and cellular disruption were likely and where protective mechanisms would be initiated. Methods: Rats with ischemia-reperfusion underwent superior mesenteric artery clamping and reperfusion. Shams were subjected to laparotomy but no clamping. Ileum and jejunum were harvested and sectioned, and subjected to fluorescence deconvolution microscopy for determinations of content and localization of rat beta defensins, 1, 2, 3; rat neutrophil protein-1; and cathelicidin LL-37. Modeling was performed to determine cellular location of antimicrobials. Results: Ischemia-reperfusion increased neutrophil defensin alpha (RNP-1) in jejunum; rat beta defensin 1 was increased 2-fold in ileal mucosa and slightly reduced in jejunal mucosa; rat beta defensin 2 was reduced by ischemia-reperfusion in ileum, but slightly increased in jejunum; rat beta defensin 3 was concentrated in the muscularis externa and myenteric plexus of the jejunum; ischemia-reperfusion did not alter cathelicidin LL-37 content in the small intestine, although a greater concentration was seen in jejunum compared with ileum. Conclusion: Ischemia-reperfusion injury caused changes in antimicrobial content in defined areas, and these different regulations might reflect the specific roles of jejunum versus ileum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary brain neoplasms and metastases to the brain are generally resistant to systemic chemotherapy. The purpose of theses studies was to determine the mechanism(s) for this resistance. We have developed a model to study the biology of brain metastasis by injecting metastatic K1735 melanoma cells into the carotid artery of syngeneic C3H/HeN or nude mice. The resulting brain lesions are produced in the parenchyma of the brain. Mice with subcutaneous or brain melanoma lesions were treated intravenously with doxorubicin (DXR) (7 mg/kg). The s.c. lesions regressed in most of the mice whereas no therapeutic benefits were produced in mice with brain metastases. The intravenous injection of sodium fluorescine revealed that the blood-brain barrier (BBB) is intact in and around brain metastases smaller than 0.2 mm$\sp2$ but not in larger lesions, implying that the BBB is not a major obstacle for chemotherapy of brain metastases.^ Western blot and FACS analyses revealed that K1735 melanoma brain metastases expressed high levels of P-glycoprotein (P-gp) as compared to s.c. tumors or in vitro cultures. Similarly, K1735 cells from brain metastases expressed higher levels of mdrl mRNA. This increased expression of mdrl was due to adaptation to the local brain environment. We base this conclusion on the results of two studies. First, K1735 cells from brain metastases cultured for 7 days lost the high mdrl expression. Second, in crossover experiments K1735 cells from s.c. tumors (low mdrl expression) implanted into the brain exhibited high levels of mdrl expression whereas cells from brain metastases implanted s.c. lost the high level mdrl expression.^ To investigate the mechanism by which the brain environment upregulates mdrl expression of the K1735 cells we first studied the regulation of P-gp in brain endothelial cells. Since astrocytes are closely linked with the BBB we cocultured brain endothelial cells for 3 days with astrocytes. These endothelial cells expressed high levels of mdrl mRNA and protein whereas endothelial cells cocultured with endothelial cells or fibroblasts did not. We next cocultured K1735 melanoma cells with astrocytes. Here again, astrocytes (but not fibroblasts or tumor cells) uprelated the mdrl expression in K1735 tumor cells. This upregulation inversely correlated with intracellular drug accumulation and sensitivity to DXR.^ The data conclude that the resistance of melanoma brain metastases to chemotherapy is not due to an intact BBB but to the upregulation of the mdrl gene by the organ microenvironment, i.e., the astrocytes. This epigenetic mediated resistance to chemotherapy has wide implications for the therapy of brain metastases. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochromes P450 (P450) comprise a superfamily of hemoproteins that function in concert with NADPH-cytochrome P450 reductase (P450-reductase) to metabolize both endogenous and exogenous compounds. Many pharmacological agents undergo phase I metabolism by this P450 and P450-reductase monooxygenase system. Phase I metabolism ensures that these highly hydrophobic xenobiotics are made more hydrophilic, and hence easier to extrude from the body. While the majority of phase I metabolism occurs in the liver, metabolism in extrahepatic organ-systems like the intestine, kidney, and brain can have important roles in drug metabolism and/or efficacy. ^ While P450-mediated phase I metabolism has been well studied, investigators have only recently begun to elucidate what physiological roles P450 may have. One way to approach this question is to study P450s that are highly or specifically expressed in extrahepatic tissues. In this project I have studied the role of a recently cloned P450 family member, P450 2D18, that was previously shown to be expressed in the rat brain and kidney, but not in the liver. To this end, I have used the baculovirus expression system to over-express recombinant P450 2D18 and purified the functional enzyme using nickel and hydroxylapatite chromatography. SDS-PAGE analysis indicated that the enzyme was purified to electrophoretic homogeneity and Western analysis showed cross-reactivity with rabbit anti-human P450 2D6. Carbon monoxide difference spectra indicated that the purified protein contained no denatured P450 enzyme; this allowed for further characterization of the substrates and metabolites formed by P450 2D18-mediated metabolism. ^ Because P450 2D18 is expressed in brain, we characterized the activity toward several psychoactive drugs including the antidepressants imipramine and desipramine, and the anti-psychotic drugs chlorpromazine and haloperidol. P450 2D18 preferentially catalyzed the N-demethylation of imipramine, desipramine, and chlorpromazine. This is interesting given the fact that other P450 isoforms form multiple metabolites from such compounds. This limited metabolic profile might suggest that P450 2D18 has some unique function, or perhaps a role in endobiotic metabolism. ^ Further analysis of possible endogenous substrates for P450 2D18 led to the identification of dopamine and arachidonic acid as substrates. It was shown that P450 2D18 catalyzes the oxidation of dopamine to aminochrome, and that the enzyme binds dopamine with an apparent KS value of 678 μM, a value well within reported dopamine concentration in brain dopaminergic systems. Further, it was shown that P450 2D18 binds arachidonic acid with an apparent KS value of 148 μM, and catalyzes both the ω-hydroxylation and epoxygenation of arachidonic acid to metabolites that have been shown to have vasoactive properties in brain, kidney, and heart tissues. These data provide clues for endogenous roles of P450 within the brain, and possible involvement in the pathogenesis of Parkinson's disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain metastasis, which occurs in 40%-60% of patients with advanced melanoma, has led directly to death in the majority of cases. Unfortunately, little is known about the biological and molecular basis of melanoma brain metastases. In our previous study, we developed a model to study human melanoma brain metastasis and found that Stat3 activity was increased in human brain metastatic melanoma cells when compared with that in cutaneous melanoma cells. The increased activation of Stat3 is also responsible for affecting melanoma angiogenesis in vivo and melanoma cell invasion in vitro and significantly affecting the expression of bFGF, VEGF, and MMP-2 in vivo and in vitro. Interestingly, a member of a new family of cytokine-inducible inhibitors of signal transduction, termed suppressors of cytokine signaling 1 (SOCS1) was found to negatively regulate the Janus kinase signal transducer and activator of transcription (Jak/STAT) signaling cascade. Here we report that restoration of SOCS1 expression by transfecting of SOCS1-expressing vector effectively inhibited melanoma brain metastasis through inhibiting Stat3 activation and further affecting melanoma angiogenesis and melanoma cell invasion in vitro, and significantly affected the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 (MMP-2) in vitro and in vivo. In addition, we used cDNA array to compare mRNA expression in the SOCS1-transfected and vector-transfected cell lines and found some genes are tightly correlated to the restoration of SOCS1. One of them is Caveolin-1 (Cav-1). Cav-1 was reported to function as a tumor suppressor gene by several groups. Finally, the Cav-1 expression is up-regulated in SOCS1-overexpressing cell line. Further study found the regulation of Cav-1 by SOCS1 occurs through inhibiting Stat3 activation. Activated Stat3 binds directly to Cav-1 promoter and the Cav-1 promoter within -575bp is essential for active Stat3 binding. My studies reveal that Stat3 activation and SOCS1 expression play important roles in melanoma metastases. Moreover, the expression between SOCS1, Stat3 and Cav-1 forms a feedback regulation loop. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spasmodic dysphonia is a neurological disorder characterized by involuntary spasms in the laryngeal muscles during speech production. Although the clinical symptoms are well characterized, the pathophysiology of this voice disorder is unknown. We describe here, for the first time to our knowledge, disorder-specific brain abnormalities in these patients as determined by a combined approach of diffusion tensor imaging (DTI) and postmortem histopathology. We used DTI to identify brain changes and to target those brain regions for neuropathological examination. DTI showed right-sided decrease of fractional anisotropy in the genu of the internal capsule and bilateral increase of overall water diffusivity in the white matter along the corticobulbar/corticospinal tract in 20 spasmodic dysphonia patients compared to 20 healthy subjects. In addition, water diffusivity was bilaterally increased in the lentiform nucleus, ventral thalamus and cerebellar white and grey matter in the patients. These brain changes were substantiated with focal histopathological abnormalities presented as a loss of axonal density and myelin content in the right genu of the internal capsule and clusters of mineral depositions, containing calcium, phosphorus and iron, in the parenchyma and vessel walls of the posterior limb of the internal capsule, putamen, globus pallidus and cerebellum in the postmortem brain tissue from one patient compared to three controls. The specificity of these brain abnormalities is confirmed by their localization, limited only to the corticobulbar/corticospinal tract and its main input/output structures. We also found positive correlation between the diffusivity changes and clinical symptoms of spasmodic dysphonia (r = 0.509, P = 0.037). These brain abnormalities may alter the central control of voluntary voice production and, therefore, may underlie the pathophysiology of this disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uptake through the dopamine transporter (DAT) represents the primary mechanism used to terminate dopaminergic transmission in brain. Although it is well known that dopamine (DA) taken up by the transporter is used to replenish synaptic vesicle stores for subsequent release, the molecular details of this mechanism are not completely understood. Here, we identified the synaptic vesicle protein synaptogyrin-3 as a DAT interacting protein using the split ubiquitin system. This interaction was confirmed through coimmunoprecipitation experiments using heterologous cell lines and mouse brain. DAT and synaptogyrin-3 colocalized at presynaptic terminals from mouse striatum. Using fluorescence resonance energy transfer microscopy, we show that both proteins interact in live neurons. Pull-down assays with GST (glutathione S-transferase) proteins revealed that the cytoplasmic N termini of both DAT and synaptogyrin-3 are sufficient for this interaction. Furthermore, the N terminus of DAT is capable of binding purified synaptic vesicles from brain tissue. Functional assays revealed that synaptogyrin-3 expression correlated with DAT activity in PC12 and MN9D cells, but not in the non-neuronal HEK-293 cells. These changes were not attributed to changes in transporter cell surface levels or to direct effect of the protein-protein interaction. Instead, the synaptogyrin-3 effect on DAT activity was abolished in the presence of the vesicular monoamine transporter-2 (VMAT2) inhibitor reserpine, suggesting a dependence on the vesicular DA storage system. Finally, we provide evidence for a biochemical complex involving DAT, synaptogyrin-3, and VMAT2. Collectively, our data identify a novel interaction between DAT and synaptogyrin-3 and suggest a physical and functional link between DAT and the vesicular DA system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Meningomyelocele (MM) is a common human birth defect. MM is a disorder of neural development caused by contributions from genes and environmental factors that result in the NTD and lead to a spectrum of physical and neurocognitive phenotypes. METHODS: A multidisciplinary approach has been taken to develop a comprehensive understanding of MM through collaborative efforts from investigators specializing in genetics, development, brain imaging, and neurocognitive outcome. Patients have been recruited from five different sites: Houston and the Texas-Mexico border area; Toronto, Canada; Los Angeles, California; and Lexington, Kentucky. Genetic risk factors for MM have been assessed by genotyping and association testing using the transmission disequilibrium test. RESULTS: A total of 509 affected child/parent trios and 309 affected child/parent duos have been enrolled to date for genetic association studies. Subsets of the patients have also been enrolled for studies assessing development, brain imaging, and neurocognitive outcomes. The study recruited two major ethnic groups, with 45.9% Hispanics of Mexican descent and 36.2% North American Caucasians of European descent. The remaining patients are African-American, South and Central American, Native American, and Asian. Studies of this group of patients have already discovered distinct corpus callosum morphology and neurocognitive deficits that associate with MM. We have identified maternal MTHFR 667T allele as a risk factor for MM. In addition, we also found that several genes for glucose transport and metabolism are potential risk factors for MM. CONCLUSIONS: The enrolled patient population provides a valuable resource for elucidating the disease characteristics and mechanisms for MM development.