2 resultados para Bradshaw, Michael J.
em DigitalCommons@The Texas Medical Center
Resumo:
Understanding the principles of calmodulin (CaM) activation of target enzymes will help delineate how this seemingly simple molecule can play such a complex role in transducing Ca (2+)-signals to a variety of downstream pathways. In the work reported here, we use biochemical and biophysical tools and a panel of CaM constructs to examine the lobe specific interactions between CaM and CaMKII necessary for the activation and autophosphorylation of the enzyme. Interestingly, the N-terminal lobe of CaM by itself was able to partially activate and allow autophosphorylation of CaMKII while the C-terminal lobe was inactive. When used together, CaMN and CaMC produced maximal CaMKII activation and autophosphorylation. Moreover, CaMNN and CaMCC (chimeras of the two N- or C-terminal lobes) both activated the kinase but with greater K act than for wtCaM. Isothermal titration calorimetry experiments showed the same rank order of affinities of wtCaM > CaMNN > CaMCC as those determined in the activity assay and that the CaM to CaMKII subunit binding ratio was 1:1. Together, our results lead to a proposed sequential mechanism to describe the activation pathway of CaMKII led by binding of the N-lobe followed by the C-lobe. This mechanism contrasts the typical sequential binding mode of CaM with other CaM-dependent enzymes, where the C-lobe of CaM binds first. The consequence of such lobe specific binding mechanisms is discussed in relation to the differential rates of Ca (2+)-binding to each lobe of CaM during intracellular Ca (2+) oscillations.
Resumo:
Background. Clostridium difficile is the leading cause of hospital associated infectious diarrhea and colitis. About 3 million cases of Clostridium difficile diarrhea occur each year with an annual cost of $1 billion. ^ About 20% of patients acquire C. difficile during hospitalization. Infection with Clostridium difficile can result in serious complications, posing a threat to the patient's life. ^ Purpose. The aim of this research was to demonstrate the uniqueness in the characteristics of C. difficile positive nosocomial diarrhea cases compared with C. difficile negative nosocomial diarrhea controls admitted to a local hospital. ^ Methods. One hundred and ninety patients with a positive test and one hundred and ninety with a negative test for Clostridium difficile nosocomial diarrhea, selected from patients tested between January 1, 2002 and December 31, 2003, comprised the study population. Demographic and clinical data were collected from medical records. Logistic regression analyses were conducted to determine the associated odds between selected variables and the outcome of Clostridium difficile nosocomial diarrhea. ^ Results. For the antibiotic classes, cephalosporins (OR, 1.87; CI 95, 1.23 to 2.85), penicillins (OR, 1.57; CI 95, 1.04 to 2.37), fluoroquinolones (OR, 1.65; CI 95, 1.09 to 2.48) and antifungals (OR, 2.17; CI 95, 1.20 to 3.94), were significantly associated with Clostridium difficile nosocomial diarrhea Ceftazidime (OR, 1.95; CI 95, 1.25 to 3.03, p=0.003), gatifloxacin (OR, 1.97; CI 95, 1.31 to 2.97, p=0.001), clindamycin (OR, 3.13; CI 95, 1.99 to 4.93, p<0.001) and vancomycin (OR, 1.77; CI 95, 1.18 to 2.66, p=0.006, were also significantly associated with the disease. Vancomycin was not statistically significant when analyzed in a multivariable model. Other significantly associated drugs were, antacids, laxatives, narcotics and ranitidine. Prolong use of antibiotics and an increased number of comorbid conditions were also associated with C. difficile nosocomial diarrhea. ^ Conclusion. The etiology for C. difficile diarrhea is multifactorial. Exposure to antibiotics and other drugs, prolonged antibiotic usage, the presence and severity of comorbid conditions and prolonged hospital stay were shown to contribute to the development of the disease. It is imperative that any attempt to prevent the disease, or contain its spread, be done on several fronts. ^