2 resultados para Boston Female Anti-slavery Society.
em DigitalCommons@The Texas Medical Center
Resumo:
OBJECTIVE: Because studies suggest that ultraviolet (UV) radiation modulates the myositis phenotype and Mi-2 autoantigen expression, we conducted a retrospective investigation to determine whether UV radiation may influence the relative prevalence of dermatomyositis and anti-Mi-2 autoantibodies in the US. METHODS: We assessed the relationship between surface UV radiation intensity in the state of residence at the time of onset with the relative prevalence of dermatomyositis and myositis autoantibodies in 380 patients with myositis from referral centers in the US. Myositis autoantibodies were detected by validated immunoprecipitation assays. Surface UV radiation intensity was estimated from UV Index data collected by the US National Weather Service. RESULTS: UV radiation intensity was associated with the relative proportion of patients with dermatomyositis (odds ratio [OR] 2.3, 95% confidence interval [95% CI] 0.9-5.8) and with the proportion of patients expressing anti-Mi-2 autoantibodies (OR 6.0, 95% CI 1.1-34.1). Modeling of these data showed that these associations were confined to women (OR 3.8, 95% CI 1.3-11.0 and OR 17.3, 95% CI 1.8-162.4, respectively) and suggests that sex influences the effects of UV radiation on autoimmune disorders. Significant associations were not observed in men, nor were UV radiation levels related to the presence of antisynthetase or anti-signal recognition particle autoantibodies. CONCLUSION: This first study of the distribution of myositis phenotypes and UV radiation exposure in the US showed that UV radiation may modulate the clinical and immunologic expression of autoimmune disease in women. Further investigation of the mechanisms by which these effects are produced may provide insights into pathogenesis and suggest therapeutic or preventative strategies.
Resumo:
Regardless of genetic sex, amniotes develop two sets of genital ducts, the Wolffian and Müllerian ducts. Normal sexual development requires the differentiation of one duct and the regression of the other. I show that cells in the rostral most region of the coelomic epithelium (CE) are specified to a Müllerian duct fate beginning at Tail Somite Stage 19 (TS19). The Müllerian duct (MD) invaginates from the CE where it extends caudally to and reaches the Wolffian duct (WD) by TS22. Upon contact, the MD elongates to the urogenital sinus separating the WD from the CE and its formation is complete by TS34. During its elongation, the MD is associated with and dependent upon the WD and I have identified the mechanism for MD elongation. Using the Rosa26 reporter to fate map the WD, I show that the WD does not contribute cells to the MD. Using an in vitro recombinant explant culture assay I show that the entire length of the MD is derived from the CE. Furthermore, I analyzed cell proliferation and developed an in vitro assay to show that a small population of cells at the caudal tip proliferates, laying the foundation for the formation of the MD. I also show that during its formation, the MD has a distinctive mesoepithelial character. The MD in males regresses under the influence of Anti-Müllerian Hormone (AMH). Through tissue-specific gene inactivation I have identified that Acvr1 and Bmpr1a and Smad1, Smad5 and Smad8 function redundantly in transducing the AMH signal. In females the MD differentiates into an epithelial tube and eventually the female reproductive tract. However, the exact tissue into which the MD differentiates has not been determined. I therefore generated a MD specific Cre allele that will allow for the fate mapping of the MD in both females males. The MD utilizes a unique form of tubulogenesis during development and to my knowledge is the only tubule that relies upon a signal from and the presence of another distinct epithelial tube for its formation.^