2 resultados para Bone healing

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of the study was to evaluate in vitro calcification potential among liposomes composed of phospholipids with variations in fatty acid chains and polar head groups. The liposome was also modified by utilizing mixed phospholipids, incorporation of different types of protein to the liposome, or complexing with various collagen preparations. The samples were then incubated in a metastable calcium phosphate solution for the proposed time period. Calcium and phosphate uptake were measured. Resulting precipitates were processed for x-ray diffraction and electron microscopy. Acidic phospholipid, Dioleoylphosphatidic acid and mixed phospholipids, Dioleoylphosphatidic acid/Dipalmitoylphosphatidylethanolamine liposomes calcified at a faster rate and to a greater degree than other phospholipids tested. The incorporation of polylysine, fibronectin, bone protein, or the complexing with collagen decreased the rate and amount of calcification. Electron microscopy demonstrated the similarity of the calcified collagen-liposome complex to the natural calcification matrix. These preparations may be used as a model to study the role of membrane lipids and collagen-phospholipid during the process of calcification.^ The in vivo study was designed to determine whether the potential existed for the promotion of bone healing by the synthetic liposome-collagen complex. The implant materials were modified to provide decreased antigenicity, biocompatability while maintaining their bone conduction properties. The samples were placed subcutaneously and/or subperiosteally and/or in 8 mm calvarium defects of adult rats. Histological and immunological studies demonstrated that the implant itself retained minimal antigenicity and did not inhibit bone formation. However, modification of the implant may contain the bone induction property and be utilized to stimulate bony healing. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The histology of healing in a tooth extraction socket has been described in many studies. The focus of research in bone biology and healing is now centered on molecular events that regulate repair of injured tissue. Rapid progress in cellular and molecular biology has resulted in identification of many signaling molecules (growth factors and cytokines) associated with formation and repair of skeletal tissues. Some of these include members of the transforming growth factor-β superfamily (including the bone morphogenetic proteins), fibroblast growth factors, platelet derived growth factors and insulin like growth factors. ^ Healing of a tooth extraction socket is a complex process involving tissue repair and regeneration. It involves chemotaxis of appropriate cells into the wound, transformation of undifferentiated mesenchymal cells to osteoprogenitor cells, proliferation and differentiation of committed bone forming cells, extracellular matrix synthesis, mineralization of osteoid, maturation and remodeling of bone. Current data suggests that these cellular events are precisely controlled and regulated by specific signaling molecules. A plethora of cytokines; have been identified and studied in the past two decades. Some of these like transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and fibroblast growth factors (FGFs) are well conserved proteins involved in the initial response to injury and repair in soft and hard tissue. ^ The purpose of this study was to characterize the spatial and temporal localization of TGF-βl, VEGF, PDGF-A, FGF-2 and BMP-2, and secretory IgA in a tooth extraction socket model, and evaluate correlation of spatial and temporal changes of these growth factors to histological events. The results of this study showed positive correlation of histological events to spatial and temporal localization of TGF-β1, BMP-2, FGF-2, PDGF-A, and VEGF in a rabbit tooth extraction model. ^