12 resultados para Body growth
em DigitalCommons@The Texas Medical Center
Resumo:
Although mechanisms regulating the formation of embryonic skeletal muscle are well characterized, less is known about muscle formation in postnatal life. This disparity is unfortunate because the largest increases in skeletal muscle mass occur after birth. Adult muscle stem cells (satellite cells) appear to recapitulate the events that occur in embryonic myoblasts. In particular, the myogenic basic helix-loop-helix factors, which have crucial functions in embryonic muscle development, are assumed to have similar roles in postnatal muscle formation. Here, I test this assumption by determining the role of the myogenic regulator myogenin in postnatal life. Myogenin-null mice die at birth, necessitating the generation of floxed alleles of myogenin and the use of cre-recombinase lines to delete myogenin. Removing myogenin before embryonic muscle development resulted in myofiber deficiencies identical to those observed in myogenin-null mice. However, mice in which myogenin was deleted following embryonic muscle development had normal skeletal muscle, except for modest alterations in MRF4 and MyoD expression. Notably, myogenin-deleted mice were 30% smaller than controls, suggesting that myogenin's absence disrupted general body growth. These results suggest that skeletal muscle growth in postnatal life is controlled by mechanisms distinct from those occurring in embryonic muscle development. ^
Resumo:
Obesity and physical inactivity are modifiable risk factors that are associated with several health issues; they are major factors in up to 30% of major cancers. Elevated levels of circulating insulin-like growth factor-I (IGF-I) have been associated with high body composition measurements and high cancer risk; exogenous estrogen use is associated with low circulating IGF-I levels and high cancer risk. The relationship between physical activity and circulating IGF levels is complex and findings of previous studies of their relationship remain inconsistent; however, these studies included vague definitions of physical activity. In this study, we used cross-sectional data from the Women's Health Initiative to determine the relationship between specific measures of physical activity (e.g., intensity, duration, and frequency) and circulating IGF-I levels, accounting for exogenous estrogen use and body composition. These data were collected from women enrolled at Women's Health Initiative clinical centers at Baylor College of Medicine and Wake Forest University School of Medicine. Multivariate linear regression analysis showed that circulating IGF-I and IGF-binding protein (BP) 3 levels were positively associated with frequency, duration, and intensity of physical activity. Circulating IGF-I levels and the molar IGF-I:IGF-BP3 ratio were significantly associated with frequency of walking, whereas circulating IGF-BP3 levels were significantly associated with strenuous physical activity, suggesting that different aspects of physical activity and their effects on fitness affect members of the IGF family differently. The results from our study support the recommendation of a regular exercise routine, particularly that of strenuous intensity, for postmenopausal women as a means to prevention of cancer.^
Resumo:
This dissertation examined body mass index (BMI) growth trajectories and the effects of gender, ethnicity, dietary intake, and physical activity (PA) on BMI growth trajectories among 3rd to 12th graders (9-18 years of age). Growth curve model analysis was performed using data from The Child and Adolescent Trial for Cardiovascular Health (CATCH) study. The study population included 2909 students who were followed up from grades 3-12. The main outcome was BMI at grades 3, 4, 5, 8, and 12. ^ The results revealed that BMI growth differed across two distinct developmental periods of childhood and adolescence. Rate of BMI growth was faster in middle childhood (9-11 years old or 3rd - 5th grades) than in adolescence (11-18 years old or 5th - 12th grades). Students with higher BMI at 3rd grade (baseline) had faster rates of BMI growth. Three groups of students with distinct BMI growth trajectories were identified: high, average, and low. ^ Black and Hispanic children were more likely to be in the groups with higher baseline BMI and faster rates of BMI growth over time. The effects of gender or ethnicity on BMI growth differed across the three groups. The effects of ethnicity on BMI growth were weakened as the children aged. The effects of gender on BMI growth were attenuated in the groups with a large proportion of black and Hispanic children, i.e., “high” or “average” BMI trajectory group. After controlling for gender, ethnicity, and age at baseline, in the “high BMI trajectory”, rate of yearly BMI growth in middle childhood increased 0.102 for every 500 Kcals increase (p=0.049). No significant effects of percentage of energy from total fat and saturated fat on BMI growth were found. Baseline BMI increased 0.041 for every 30 minutes increased in moderate-to-vigorous PA (MVPA) in the “low BMI trajectory”, while Baseline BMI decreased 0.345 for every 30 minutes increased in vigorous PA (VPA) in the “high BMI trajectory”. ^ Childhood overweight and obesity interventions should start at the earliest possible ages, prior to 3rd grade and continue through grade school. Interventions should focus on all children, but specifically black and Hispanic children, who are more likely to be highest at-risk. Promoting VPA earlier in childhood is important for preventing overweight and obesity among children and adolescents. Interventions should target total energy intake, rather than only percentage of energy from total fat or saturated fat. ^
Resumo:
Longitudinal principal components analyses on a combination of four subcutaneous skinfolds (biceps, triceps, subscapular and suprailiac) were performed using data from the London Longitudinal Growth Study. The main objectives were to discover at what age during growth sex differences in body fat distribution occur and to see if there is continuity in body fatness and body fat distribution from childhood into the adult status (18 years). The analyses were done for four age sectors (3mon-3yrs, 3yrs-8yrs, 8yrs-18yrs and 3yrs-18yrs). Longitudinal principal component one (LPC1) for each age interval in both sexes represents the population mean fat curve. Component two (LPC2) is a velocity of fatness component. Component three (LPC3) in the 3mon-3yrs age sector represents infant fat wave in both sexes. In the next two age sectors component three in males represents peaks and shifts in fat growth (change in velocity), while in females it represents body fat distribution. Component four (LPC4) in the same two age sectors is a reversal in the sexes of the patterns seen for component three, i.e., in males it is body fat distribution and in females velocity shifts. Components five and above represent more complicated patterns of change (multiple increases and decreases across the age interval). In both sexes there is strong tracking in fatness from middle childhood to adolescence. In males only there is also a low to moderate tracking of infant fat with middle to late childhood fat. These data are strongly supported in the literature. Several factors are known to predict adult fatness among the most important being previous levels of fatness (at earlier ages) and the age at rebound. In addition we found that the velocity of fat change in middle childhood was highly predictive of later fatness (r $\approx -$0.7), even more so than age at rebound (r $\approx -$0.5). In contrast to fatness (LPC1), body fat distribution (LPC3-LPC4) did not track well even though significant components of body fat distribution occur at each age. Tracking of body fat distribution was higher in females than males. Sex differences in body fat distribution are non existent. Some sex differences are evident with the peripheral-to-central ratios after age 14 years. ^
Resumo:
The length of time that integral membrane proteins reside on the plasma membrane is regulated by endocytosis, a process that can inactivate these proteins by removing them from the membrane and may ultimately result in their degradation. Proteins are internalized and pass through multiple distinct intracellular compartments where targeting decisions determine their fate. Membrane proteins initially enter early endosomes, and subsequently late endosomes/multivesicular bodies (MVBs), before being degraded in the lysosome. The MVB is a subset of late endosomes characterized by the appearance of small vesicles in its luminal compartment. These vesicles contain cargo proteins sorted from the limiting membrane of the MVB. Proteins not sorted into luminal vesicles remain on the MVB membrane, from where they may be recycled back to the plasma membrane. In the case of receptor tyrosine kinases (RTKs), such as epidermal growth factor (EGF) receptor, this important sorting step determines whether a protein returns to the surface to participate in signaling, or whether its signaling properties are inactivated through its degradation in the lysosome. Hrs is a protein that resides on endosomes and is known to recruit sorting complexes that are vital to this sorting step. These sorting complexes are believed to recognize ubiquitin as sorting signals. However, the link between MVB sorting machinery and the ubiquitination machinery is not known. Recently, Hrs was shown to recruit and bind an E3 ubiquitin ligase, UBE4B, to endosomes. In an assay that is able to measure cargo movement, the disruption of the Hrs-UBE4B interaction showed impaired sorting of EGF receptor into MVBs. My hypothesis is that UBE4B may be the connection between MVB sorting and ubiquitination. This study addresses the role of UBE4B in the trafficking and ubiquitination of EGF receptor. I created stable cell lines that either overexpresses UBE4B or expresses a UBE4B with no ligase activity. Levels of EGF receptor were analyzed after certain periods of ligand-induced receptor internalization. I observed that higher expression levels of UBE4B correspond to increased degradation of EGF receptor. In an in vitro ubiquitination assay, I also determined that UBE4B mediates the ubiquitination of EGF receptor. These data suggest that UBE4B is required for EGFR degradation specifically because it ubiquitinates the receptor allowing it to be sorted into the internal vesicles of MVBs and subsequently degraded in lysosomes.
Resumo:
Second-generation antipsychotics (SGAs) are increasingly prescribed to treat psychiatric symptoms in pediatric patients infected with HIV. We examined the relationship between prescribed SGAs and physical growth in a cohort of youth with perinatally acquired HIV-1 infection. Pediatric AIDS Clinical Trials Group (PACTG), Protocol 219C (P219C), a multicenter, longitudinal observational study of children and adolescents perinatally exposed to HIV, was conducted from September 2000 until May 2007. The analysis included P219C participants who were perinatally HIV-infected, 3-18 years old, prescribed first SGA for at least 1 month, and had available baseline data prior to starting first SGA. Each participant prescribed an SGA was matched (based on gender, age, Tanner stage, baseline body mass index [BMI] z score) with 1-3 controls without antipsychotic prescriptions. The main outcomes were short-term (approximately 6 months) and long-term (approximately 2 years) changes in BMI z scores from baseline. There were 236 participants in the short-term and 198 in the long-term analysis. In linear regression models, youth with SGA prescriptions had increased BMI z scores relative to youth without antipsychotic prescriptions, for all SGAs (short-term increase = 0.192, p = 0.003; long-term increase = 0.350, p < 0.001), and for risperidone alone (short-term = 0.239, p = 0.002; long-term = 0.360, p = 0.001). Participants receiving both protease inhibitors (PIs) and SGAs showed especially large increases. These findings suggest that growth should be carefully monitored in youth with perinatally acquired HIV who are prescribed SGAs. Future research should investigate the interaction between PIs and SGAs in children and adolescents with perinatally acquired HIV infection.
Resumo:
OBJECTIVE: To examine the relationships between physical growth and medications prescribed for symptoms of attention-deficit hyperactivity disorder in children with HIV. METHODS: Analysis of data from children with perinatally acquired HIV (N = 2251; age 3-19 years), with and without prescriptions for stimulant and nonstimulant medications used to treat attention-deficit hyperactivity disorder, in a long-term observational study. Height and weight measurements were transformed to z scores and compared across medication groups. Changes in z scores during a 2-year interval were compared using multiple linear regression models adjusting for selected covariates. RESULTS: Participants with (n = 215) and without (n = 2036) prescriptions were shorter than expected based on US age and gender norms (p < .001). Children without prescriptions weighed less at baseline than children in the general population (p < .001) but gained height and weight at a faster rate (p < .001). Children prescribed stimulants were similar to population norms in baseline weight; their height and weight growth velocities were comparable with the general population and children without prescriptions (for weight, p = .511 and .100, respectively). Children prescribed nonstimulants had the lowest baseline height but were similar to population norms in baseline weight. Their height and weight growth velocities were comparable with the general population but significantly slower than children without prescriptions (p = .01 and .02, respectively). CONCLUSION: The use of stimulants to treat symptoms of attention-deficit hyperactivity disorder does not significantly exacerbate the potential for growth delay in children with HIV and may afford opportunities for interventions that promote physical growth. Prospective studies are needed to confirm these findings.
Resumo:
BACKGROUND: Whole-body hypothermia reduced the frequency of death or moderate/severe disabilities in neonates with hypoxic-ischemic encephalopathy in a randomized, controlled multicenter trial. OBJECTIVE: Our goal was to evaluate outcomes of safety and effectiveness of hypothermia in infants up to 18 to 22 months of age. DESIGN/METHODS: A priori outcomes were evaluated between hypothermia (n = 102) and control (n = 106) groups. RESULTS: Encephalopathy attributable to causes other than hypoxia-ischemia at birth was not noted. Inotropic support (hypothermia, 59% of infants; control, 56% of infants) was similar during the 72-hour study intervention period in both groups. Need for blood transfusions (hypothermia, 24%; control, 24%), platelet transfusions (hypothermia, 20%; control, 12%), and volume expanders (hypothermia, 54%; control, 49%) was similar in the 2 groups. Among infants with persistent pulmonary hypertension (hypothermia, 25%; control, 22%), nitric-oxide use (hypothermia, 68%; control, 57%) and placement on extracorporeal membrane oxygenation (hypothermia, 4%; control, 9%) was similar between the 2 groups. Non-central nervous system organ dysfunctions occurred with similar frequency in the hypothermia (74%) and control (73%) groups. Rehospitalization occurred among 27% of the infants in the hypothermia group and 42% of infants in the control group. At 18 months, the hypothermia group had 24 deaths, 19 severe disabilities, and 2 moderate disabilities, whereas the control group had 38 deaths, 25 severe disabilities, and 1 moderate disability. Growth parameters were similar between survivors. No adverse outcomes were noted among infants receiving hypothermia with transient reduction of temperature below a target of 33.5 degrees C at initiation of cooling. There was a trend in reduction of frequency of all outcomes in the hypothermia group compared with the control group in both moderate and severe encephalopathy categories. CONCLUSIONS: Although not powered to test these secondary outcomes, whole-body hypothermia in infants with encephalopathy was safe and was associated with a consistent trend for decreasing frequency of each of the components of disability.
Resumo:
Left ventricular mass (LVM) is a strong predictor of cardiovascular disease (CVD) in adults. However, normal growth of LVM in healthy children is not well understood, and previous results on independent effects of body size and body fatness on LVM have been inconsistent. The purpose of this study was (1) to establish the normal growth curve of LVM from age 8 to age 18, and evaluate the determinants of change in LVM with age, and (2) to assess the independent effects of body size and body fatness on LVM.^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. A synthetic cohort with continuous observations from age 8 to 18 years was constructed. A total of 4608 LVM measurements was made from M-mode echocardiography. The multilevel linear model was used for analysis.^ Sex-specific trajectories of normal growth of LVM from age 8 to 18 was displayed. On average, LVM was 15 g higher in males than females. Average LVM increased linearly in males from 78 g at age 8 to 145 g at age 18. For females, the trajectory was curvilinear, nearly constant after age 14. No significant racial differences were found. After adjustment for the effects of body size and body fatness, average LVM decreased slightly from age 8 to 18, and sex differences in changes of LVM remained constant.^ The impact of body size on LVM was examined by adding to a basic LVM-sex-age model one of 9 body size indicators. The impact of body fatness was tested by further introducing into each of the 9 LVM models (with one or another of the body size indicators) one of 4 body fatness indicators, yielding 36 models with different body size and body fatness combinations. The results indicated that effects of body size on LVM can be distinguished between fat-free body mass and fat body mass, both being independent, positive predictors. The former is the stronger determinant. When a non-fat-free body size indicator is used as predictor, the estimated residual effect of body fatness on LVM becomes negative. ^
Resumo:
Previous studies of normal children have linked body fat but not body fat distribution (BFD), to higher blood pressures, lipids, and insulin resistance (Berenson et al., 1988) BFD is a well-established risk factor for cardiovascular disease in adults (Björntorp, 1988). This study investigates the relation of BFD and serum lipids at baseline in children from Project HeartBeat!, a study of the growth and development of cardiovascular risk factors in 678 children in three cohorts measured initially at ages 8, 11, and 14 years. Initially, two of four indices of BFD were significantly related to the lipids: ratio of upper to lower body skinfolds (ln US:LS) and conicity (C Index). A factor analysis reduced the information in the serum lipids to two vectors: (1) total cholesterol + LDL-cholesterol and (2) HDL-cholesterol − triglycerides, which together accounted for 85% of the lipid variation. Using each serum lipid and vector as separate dependent variables, linear and quadratic regression models were constructed to examine the predictive ability of the two BFD variables, controlling for total body fat, gender, ethnicity (Black, non-Black) and maturation. Linear models provided an acceptable fit. Percent body fat (%BF) was a significant predictor in each and every lipid model, independent of age, maturation, or ethnicity (p ≤ 0.05). No BFD variable entered the equation for total or LDL-cholesterol, although there was a significant maturity by BFD interaction for LDL (ln US:LS was a significant predictor in more mature individuals). Both %BF and BFD (by way of Conicity) were significant predictors of HDL-cholesterol and triglycerides (p ≤ 0.01). All models were statistically significant at a high level (p ≤ 0.01), but adjusted R 2's for all models were low (0.05–0.15). Body fat distribution is a significant predictor of lipids in normal children, but secondarily to %BF, and for LDL-cholesterol in particular, the relation is dependent on maturity status. ^
Resumo:
Introduction: Obesity is an epidemic in the United States, especially among Hispanics and African-Americans. Studies of obesity and breast cancer risk and subtype have been conducted primarily in non-Hispanic whites. Obesity is inversely associated with premenopausal breast cancer, but both obesity and weight gain increase the risk of postmenopausal disease. Obesity has been associated with breast cancer subtype in many studies. Methods: To assess the association between changes in body mass index (BMI) over the lifetime, weight gain, and breast cancer in Mexican-American women, we conducted a case-control study using 149 cases and 330 age-matched controls. In a second study, we identified 212 African-American and 167 Mexican-American women with breast cancer in the ongoing ELLA Bi-National Breast Cancer Study, abstracted medical charts to classify tumors as ER+/PR+, HER2+, or ER-/PR-/HER2-, and assessed the association between lifetime changes in body mass index, weight gain, and breast cancer subtype. In both studies, growth mixture modeling was use to identify trajectories of change in BMI over the lifetime, and these trajectories were used as exposures in a logistic regression model to calculate odds ratios (OR). Results: There was no association between trajectories of change in BMI and breast cancer risk in Mexican-American women. In addition, BMI at ages 15 and 30 and at diagnosis was not associated with breast cancer. However, adult weight gain was inversely associated with breast cancer risk (per 5kg, OR=0.92, 95% CI: 0.85-0.99). The case-only analysis found no association between obesity at ages 15 and 30 and at diagnosis and breast cancer subtype. Further, there was no association between adult weight gain (defined as weight change from age 15 to time of diagnosis) and breast cancer subtype. Conclusions: Obesity was not associated with breast cancer risk in Mexican-American women, while adult weight gain reduced the risk independently of menopausal status. These results are contradictory of those in non-Hispanic white women and suggest that the etiology of breast cancer may differ by race/ethnicity. Further, obesity was not associated with breast cancer subtype in African-American and Mexican-American women, contrary to results in non-Hispanic white women. ^
Resumo:
This study described the relationship of sexual maturation and blood pressure in a sample (n = 361) of white females, ages seven through 18, attending public schools in a defined area of Central Texas during October through December, 1984. Other correlates of blood pressure were also described for this sample.^ A survey was performed to obtain the data on height, weight, body mass, pulse rate, upper arm circumference and length, and blood pressure. Each subject self-assessed her secondary sex characteristics (breast and pubic hair) according to drawings of the Tanner stages of maturation. The subjects were interviewed to obtain data on personal health habits and menstrual status. Student age, ethnic group and place of residence were abstracted from school records. Parents or guardians of the subjects responded to a questionnaire pertaining to parental and subject health history and parents' occupation and educational attainment.^ In the simple linear regression analysis, sexual maturation and variables of body size were significantly (p < 0.001) and positively associated with systolic and fourth- and fifth-phase diastolic blood pressure. The demographic and socioeconomic variables were not sufficiently variant in this population to have differential effects on the relation between blood pressure and maturation. Stepwise multiple regression was used to assess the contribution of sexual maturation to the variance of blood pressure after accounting for the variables of body size. Sexual maturation (breast stage) along with weight, height and body mass remained in the multiple regression models for fourth- and fifth-phase diastolic blood pressure. Only height and body mass remained in the regression model for systolic blood pressure; sexual maturation did not contribute more to the explanation of the systolic blood pressure variance.^ The association of sexual maturation with blood pressure level was established in this sample of young white females. More research is needed first, to determine if this relationship prevails in other populations of young females, and second, to determine the relationship of sexual maturation sequence and change with the change of blood pressure during childhood and adolescence. ^