3 resultados para Blumlien Circuit

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tail-withdrawal circuit of Aplysia provides a useful model system for investigating synaptic dynamics. Sensory neurons within the circuit manifest several forms of synaptic plasticity. Here, we developed a model of the circuit and investigated the ways in which depression (DEP) and potentiation (POT) contributed to information processing. DEP limited the amount of motor neuron activity that could be elicited by the monosynaptic pathway alone. POT within the monosynaptic pathway did not compensate for DEP. There was, however, a synergistic interaction between POT and the polysynaptic pathway. This synergism extended the dynamic range of the network, and the interplay between DEP and POT made the circuit responded preferentially to long-duration, low-frequency inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tail-withdrawal circuit of Aplysia provides a useful model system for investigating synaptic dynamics. Sensory neurons within the circuit manifest several forms of synaptic plasticity. Here, we developed a model of the circuit and investigated the ways in which depression (DEP) and potentiation (POT) contributed to information processing. DEP limited the amount of motor neuron activity that could be elicited by the monosynaptic pathway alone. POT within the monosynaptic pathway did not compensate for DEP. There was, however, a synergistic interaction between POT and the polysynaptic pathway. This synergism extended the dynamic range of the network, and the interplay between DEP and POT made the circuit responded preferentially to long-duration, low-frequency inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that short-term sensitization of the Aplysia siphon-withdrawal reflex circuit results in multiple sites of change in synaptic efficacy. In this dissertation I have used a realistic modeling approach (using an integrate-and-fire scheme), in conjunction with electrophysiological experiments, to evaluate the contribution of each site of plasticity to the sensitized response.^ This dissertation contains a detailed description of methodology for the construction of the model circuit, consisting of the LFS motor neurons and ten interneurons known to convey excitatory input to them. The model replicates closely the natural motor neuron firing response to a brief tactile stimulus.^ The various circuit elements have different roles for producing circuit output. For example, the sensory connections onto the motor neuron are important for the production of the phasic response, while the polysynaptic interneuronal connections are important for producing the tonic response.^ The multiple sites of plasticity that produce changes in circuit output also have specialized roles. Presynaptic facilitation of the sensory neuron to LFS connection enhances only the phasic component of the motor neuron firing response. The sensory neuron to interneuron connections primarily enhance the tonic component of the motor neuron firing response. Also, the L29 posttetanic potentiation and the L30 presynaptic inhibition primarily enhance the tonic component of the motor neuron firing response. Finally, the information content at the various sites of plasticity can shift with changes in stimulus intensity. This suggests that while the sites of plasticity encoding memory are fixed, the information content at these sites can be dynamic, shifting in anatomical location with changes in the intensity of the test stimulus.^ These sites of plasticity also produce specific changes in the behavioral response. Sensory-LFS plasticity selectively increases the amplitude of the behavioral response, and has no effect on the duration of the behavioral response. Interneuronal plasticity (L29 and L30) affects both the amplitude and duration of the behavioral response. Other sensory plasticity also affect both the amplitude and duration of the behavioral response, presumably by increasing the recruitment of the interneurons, which provide all of the effect on duration of the behavioral response. ^