2 resultados para Blood clotting parameters

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Obesity prevalence among children and adolescents is rising. It is one of the most attributable causes of hospitalization and death. Overweight and obese children are more likely to suffer from associated conditions such as hypertension, dyslipidemia, chronic inflammation, increased blood clotting tendency, endothelial dysfunction, hyperinsulinemia, and asthma. These children and adolescents are also more likely to be overweight and obese in adulthood. Interestingly, rates of obesity and overweight are not evenly distributed across racial and ethnic groups. Mexican American youth have higher rates of obesity and are at higher risk of becoming obese than non-Hispanic black and non-Hispanic white children. ^ Methods. This cross-sectional study describes the association between rates of obesity and physical activity in a sample of 1313 inner-city Mexican American children and adolescents (5-19 years of age) in Houston, Texas. This study is important because it will contribute to our understanding of childhood and adolescent obesity in this at-risk population. ^ Data from the Mexican American Feasibility Cohort using the Mano a Mano questionnaire are used to describe this population's status of obesity and physical activity. An initial sample taken from 5000 households in inner city Houston Texas was used as the baseline for this prospective cohort. The questionnaire was given in person to the participants to complete (or to parents for younger children) at a home visit by two specially trained bilingual interviewers. Analysis comprised prevalence estimates of obesity represented as percentile rank (<85%= normal weight, >85%= at risk, >95%= obese) by age and gender. The association between light, moderate, strenuous activity, and obesity was also examined using linear regression. ^ Results. Overall, 46% of this Mexican American Feasibility cohort is overweight or obese. The prevalence for children in the 6-11 age range (53.2%) was significantly greater than that reported from NHANES, 1999–2002 data (39.4%). Although the percentage of overweight and obese among the 12-19 year olds was greater than that reported in NHANES (38.5% versus 38.6%) this difference was not statistically significant. ^ A significant association between BMI and sit time and moderate physical activity (both p < 0.05) found in this sample. For males, this association was significant for moderate physical activity (p < 0.01). For the females, this association was significant for BMI and sit time (p < 0.05). These results need to be interpreted in the light of design and measurement limitations. ^ Conclusion. This study supports observations that the inner city Houston Texas Mexican American child and adolescent population is more overweight and obese than nationally reported figures, and that there are positive relationships between BMI, activity levels, and sit time in this population. This study supports the need for public health initiatives within the Houston Hispanic community. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arterial spin labeling (ASL) is a technique for noninvasively measuring cerebral perfusion using magnetic resonance imaging. Clinical applications of ASL include functional activation studies, evaluation of the effect of pharmaceuticals on perfusion, and assessment of cerebrovascular disease, stroke, and brain tumor. The use of ASL in the clinic has been limited by poor image quality when large anatomic coverage is required and the time required for data acquisition and processing. This research sought to address these difficulties by optimizing the ASL acquisition and processing schemes. To improve data acquisition, optimal acquisition parameters were determined through simulations, phantom studies and in vivo measurements. The scan time for ASL data acquisition was limited to fifteen minutes to reduce potential subject motion. A processing scheme was implemented that rapidly produced regional cerebral blood flow (rCBF) maps with minimal user input. To provide a measure of the precision of the rCBF values produced by ASL, bootstrap analysis was performed on a representative data set. The bootstrap analysis of single gray and white matter voxels yielded a coefficient of variation of 6.7% and 29% respectively, implying that the calculated rCBF value is far more precise for gray matter than white matter. Additionally, bootstrap analysis was performed to investigate the sensitivity of the rCBF data to the input parameters and provide a quantitative comparison of several existing perfusion models. This study guided the selection of the optimum perfusion quantification model for further experiments. The optimized ASL acquisition and processing schemes were evaluated with two ASL acquisitions on each of five normal subjects. The gray-to-white matter rCBF ratios for nine of the ten acquisitions were within ±10% of 2.6 and none were statistically different from 2.6, the typical ratio produced by a variety of quantitative perfusion techniques. Overall, this work produced an ASL data acquisition and processing technique for quantitative perfusion and functional activation studies, while revealing the limitations of the technique through bootstrap analysis. ^