11 resultados para Blood carbon monoxide levels.
em DigitalCommons@The Texas Medical Center
Resumo:
Purpose. The aim of this research was to evaluate the effect of enteral feeding on tonometric measurement of gastric regional carbon dioxide levels (PrCO2) in normal healthy volunteers. Design and methods. The sample included 12 healthy volunteers recruited by the University Clinical Research Center (UCRC). An air tonometry system monitored PrCO2 levels using a tonometer placed in the lumen of the stomach via orogastric intubation. PrCO2 was automatically measured and recorded every 10 minutes throughout the five hour study period. An oral dose of famotidine 40 mg was self-administered the evening prior to and the morning of the study. Instillation of Isocal® High Nitrogen (HN) was used for enteral feeding in hourly escalating doses of 0, 40, 60, and 80 ml/hr with no feeding during the fifth hour. Results . PrCO2 measurements at time 0 and 10 minutes (41.4 ± 6.5 and 41.8 ± 5.7, respectively) demonstrated biologic precision (Levene's Test statistic = 0.085, p-value 0.774). Biologic precision was lost between T130 and T140 40 when compared to baseline TO (Levene's Test statistic = 1.70, p-value 0.205; and 3.205, p-value 0.042, respectively) and returned to non-significant levels between T270 and T280 (Levene's Test statistic = 3.083, p-value 0.043; and 2.307, p-value 0.143, respectively). Isocal® HN significantly affected the biologic accuracy of PrCO2 measurements (repeated measures ANOVA F 4.91, p-value <0.001). After 20 minutes of enteral feeding at 40 ml/hr, PrCO2 significantly increased (41.4 ± 6.5 to 46.6 ± 4.25, F = 5.4, p-value 0.029). Maximum variance from baseline (41.4 ± 6.5 to 61.3 ± 15.2, F = 17.22, p-value <0.001) was noted after 30 minutes of Isocal® HN at 80 ml/hr or 210 minutes from baseline. The significant elevations in PrCO2 continued throughout the study. Sixty minutes after discontinuation of enteral feeding, PrCO2 remained significantly elevated from baseline (41.4 ± 6.5 to 51.8 ± 9.2, F = 10.15, p-value 0.004). Conclusion. Enteral feeding with Isocal® HN significantly affects the precision and accuracy of PrCO2 measurements in healthy volunteers. ^
Resumo:
This study focused on the possible relationship between certain physiological and psychological variables and the cessation of smoking. The population studied was employees enrolled in a multimodality smoking cessation program at the local offices of a major American corporation. In order to be eligible to participate, each individual must have become a non-smoker by the end of the smoking cessation program.^ Three physiological measures were taken on each individual while performing a relaxation exercise; (1) Electromyogram (EMG), (2) Galvanic Skin Response (GSR), and (3) Skin Temperature. The psychological measure consisted of the variable "anxiety" in the Cattell 16-PF personality inventory. Individual's self report of their smoking status was verified through a test for expired carbon monoxide levels.^ For the total population (N-31) no significant relationships were found between the physiological and psychological variable measured and cessation; however, with the removal of two cases discovered during the post-test interview to be influenced by external factors of high caffeine level and a severe family crisis, the measure of EMG, attained significance in discriminating between the successful and unsuccessful in Smoking Cessation. ^
Resumo:
The rheoencephalogram (REG) is the change in the electrical impedance of the head that occurs with each heart beat. Without knowledge of the relationship between cerebral blood flow (Q) and the REG, the utility of the REG in the study of the cerebral vasculature is greatly limited. The hypothesis is that the relationship between the REG and Q when venous outflow is nonpulsatile is^ (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI)^ where K is a proportionality constant and Q is the mean Q.^ Pulsatile CBF was measured in the goat via a chronically implanted electromagnetic flowmeter. Electrodes were implanted in the ipsilateral cerebral hemisphere, and the REG was measured with a two electrode impedance plethysmograph. Measurements were made with the animal's head elevated so that venous flow pulsations were not transmitted from the heart to the cerebral veins. Measurements were made under conditions of varied cerebrovascular resistance induced by altering blood CO(,2) levels and under conditions of high and low cerebrospinal fluid pressures. There was a high correlation (r = .922-.983) between the REG calculated from the hypothesized relationship and the measured REG under all conditions.^ Other investigators have proposed that the REG results from linear changes in blood resistivity proportional to blood velocity. There was little to no correlation between the measured REG and the flow velocity ( r = .022-.306). A linear combination of the flow velocity and the hypothesized relationship between the REG and Q did not predict the measured REG significantly better than the hypothesized relationship alone in 37 out of 50 experiments.^ Jacquy proposed an index (F) of cerebral blood flow calculated from amplitudes and latencies of the REG. The F index was highly correlated (r = .929) with measured cerebral blood flow under control and hypercapnic conditions, but was not as highly correlated under conditions of hypocapnia (r = .723) and arterial hypotension (r = .681).^ The results demonstrate that the REG is not determined by mean cerebral blood flow, but by the pulsatile flow only. Thus, the utility of the REG in the determination of mean cerebral blood flow is limited. ^
Resumo:
Lipopolysaccharide (LPS) causes hepatic injury that is mediated, in part, by upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Ketamine has been shown to prevent these effects. Because upregulation of heme oxygenase-1 (HO-1) has hepatoprotective effects, as does carbon monoxide (CO), an end product of the HO-1 catalytic reaction, we examined the effects of HO-1 inhibition on ketamine-induced hepatoprotection and assessed whether CO could attenuate LPS-induced hepatic injury. One group of rats received ketamine (70 mg/kg ip) or saline concurrently with either the HO-1 inhibitor tin protoporphyrin IX (50 micromol/kg ip) or saline. Another group of rats received inhalational CO (250 ppm over 1 h) or room air. All rats were given LPS (20 mg/kg ip) or saline 1 h later and euthanized 5 h after LPS or saline. Liver was collected for iNOS, COX-2, and HO-1 (Western blot), NF-kappaB and PPAR-gamma analysis (EMSA), and iNOS and COX-2 mRNA analysis (RT-PCR). Serum was collected to measure alanine aminotransferase as an index of hepatocellular injury. HO-1 inhibition attenuated ketamine-induced hepatoprotection and downregulation of iNOS and COX-2 protein. CO prevented LPS-induced hepatic injury and upregulation of iNOS and COX-2 proteins. Although CO abolished the ability of LPS to diminish PPAR-gamma activity, it enhanced NF-kappaB activity. These data suggest that the hepatoprotective effects of ketamine are mediated primarily by HO-1 and its end product CO.
Resumo:
The cytochromes P450 (P450) comprise a superfamily of hemoproteins that function in concert with NADPH-cytochrome P450 reductase (P450-reductase) to metabolize both endogenous and exogenous compounds. Many pharmacological agents undergo phase I metabolism by this P450 and P450-reductase monooxygenase system. Phase I metabolism ensures that these highly hydrophobic xenobiotics are made more hydrophilic, and hence easier to extrude from the body. While the majority of phase I metabolism occurs in the liver, metabolism in extrahepatic organ-systems like the intestine, kidney, and brain can have important roles in drug metabolism and/or efficacy. ^ While P450-mediated phase I metabolism has been well studied, investigators have only recently begun to elucidate what physiological roles P450 may have. One way to approach this question is to study P450s that are highly or specifically expressed in extrahepatic tissues. In this project I have studied the role of a recently cloned P450 family member, P450 2D18, that was previously shown to be expressed in the rat brain and kidney, but not in the liver. To this end, I have used the baculovirus expression system to over-express recombinant P450 2D18 and purified the functional enzyme using nickel and hydroxylapatite chromatography. SDS-PAGE analysis indicated that the enzyme was purified to electrophoretic homogeneity and Western analysis showed cross-reactivity with rabbit anti-human P450 2D6. Carbon monoxide difference spectra indicated that the purified protein contained no denatured P450 enzyme; this allowed for further characterization of the substrates and metabolites formed by P450 2D18-mediated metabolism. ^ Because P450 2D18 is expressed in brain, we characterized the activity toward several psychoactive drugs including the antidepressants imipramine and desipramine, and the anti-psychotic drugs chlorpromazine and haloperidol. P450 2D18 preferentially catalyzed the N-demethylation of imipramine, desipramine, and chlorpromazine. This is interesting given the fact that other P450 isoforms form multiple metabolites from such compounds. This limited metabolic profile might suggest that P450 2D18 has some unique function, or perhaps a role in endobiotic metabolism. ^ Further analysis of possible endogenous substrates for P450 2D18 led to the identification of dopamine and arachidonic acid as substrates. It was shown that P450 2D18 catalyzes the oxidation of dopamine to aminochrome, and that the enzyme binds dopamine with an apparent KS value of 678 μM, a value well within reported dopamine concentration in brain dopaminergic systems. Further, it was shown that P450 2D18 binds arachidonic acid with an apparent KS value of 148 μM, and catalyzes both the ω-hydroxylation and epoxygenation of arachidonic acid to metabolites that have been shown to have vasoactive properties in brain, kidney, and heart tissues. These data provide clues for endogenous roles of P450 within the brain, and possible involvement in the pathogenesis of Parkinson's disease. ^
Resumo:
Non-pregnant, female adult rats pretreated with either phenobarbital (PB) or (beta)-naphthoflavone ((beta)NF) through short-course intraperitoneal injections were shown by sodium dithionite-reduced carbon monoxide difference spectroscopy and NADPH-cytochrome c in vitro assay to contain cytochrome P-450 and NADPH-dependent reductase associated with the microsomal fraction of colon mucosa. These two protein components of the mixed function oxidase system were released from the microsomal membrane, resolved from each other, and partially purified by using a combination of techniques including solubilization in nonionic detergent followed by ultracentrifugation, anion exchange and adsorption column chromatographies, native gel electrophoresis, polyethylene glycol fractionation and ultrafiltration.^ In vitro reconstitution assays demonstrated the cytochrome P-450 fraction as the site of substrate and molecular oxygen binding. By the use of immunochemical techniques including radial immunodiffusion, Ouchterlony double diffusion and protein electroblotting, the cytochrome P-450 fraction was shown to contain at least 5 forms of the protein, having molecular weights as determined by SDS gel electrophoresis identical to the corresponding hepatic cytochrome P-450. Estimation of total cytochrome P-450 content confirmed the preferential induction of particular forms in response to the appropriate drug pretreatment.^ The colonic NADPH-dependent reductase was isolated from native gel electrophoresis and second dimensional SDS gel electrophoresis was performed in parallel to that for purified reductase from liver. Comparative electrophoretic mobilities together with immunochemical analysis, as with the cytochrome P-450s, reconstitution assays, and kinetic characterization using artificial electron acceptors, gave conclusive proof of the structural and functional homology between the colon and liver sources of the enzyme.^ Drug metabolism was performed in the reconstituted mixed function oxidase system containing a particular purified liver cytochrome P-450 form or partially pure colon cytochrome P-450 fraction plus colon or liver reductase and synthetic lipid vesicles. The two drugs, benzo{(alpha)}pyrene and benzphetamine, which are most representative of the action of system in liver, lung and kidney, were tested to determine the specificity of the reconstituted system. The kinetics of benzo{(alpha)}pyrene hydroxylation were followed fluorimetrically for 3-hydroxybenzo{(alpha)}pyrene production. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Resumo:
This MPH thesis consists of (1) literature review of the relatively new synthetic persistent organic pollutants (POP), polybrominated diphenyl ethers (PBDEs), a type of flame retardant posing a potential public health hazard, (2) Presentation of data on PBDE levels in dryer lint from Dallas, TX and Hamburg, Germany. ^ PBDEs are used as additive fire retardants in plastics, polyurethane foam and electronic equipment to reduce flammability and thus save life and property. PBDEs have been widely used beginning in the 1970s. They resemble polychlorinated biphenyls (PCBs) in structure and toxicity. PBDEs are found in environmental sediments, sludges, and wildlife and even in human blood, milk and tissues. ^ PBDEs, due to their lipophilicity, accumulate in fat and other tissues and biomagnify up the food chain, with increasing concentrations. Animal studies have suggested potential health effects including thyroid disruption, permanent learning and memory impairment, fetal malformations, developmental neurotoxicity and, at high doses, possibly cancer. ^ PBDE levels are increasing in blood and breast milk in North America, but PBDEs intake unlike PCBs appears to be not primarily through food; food PBDE levels in the U.S. are not markedly higher than in Europe yet U.S. human blood and milk levels are much higher. For this reason various exposure pathways including PBDE contaminated dust and air have been studied to better characterize routes of PBDE intake into humans. ^ The scientific literature on PBDE levels in household dust reports higher PBDE concentration in dust than that found in dryer lint; levels in the U.S are elevated compared to other countries with congeners such as BDE 47, 99, 100 and 209 predominating. The United Kingdom has elevated BDE 209 due to high usage of Deca commercial mixture. These studies suggest that indoor PBDE contamination through household dust could be a potential source of PBDE exposure and body burden especially in young children. ^ PBDE levels in dryer lint from U.S ranged from 321 to 3073 ng/g (Mean: 1138 ng/g, Median: 803 ng/g) and from Germany were from 330 to 2069 ng/g (Median: 71ng/g, Mean: 361 ng/g). High median levels in U.S samples indicate contamination of lint with PBDEs although the source of the PBDEs in lint may be from dryer electrical components or air deposition onto clothes, lint may be one source of PBDE exposure to humans. ^
Resumo:
Many studies have shown relationships between air pollution and the rate of hospital admissions for asthma. A few studies have controlled for age-specific effects by adding separate smoothing functions for each age group. However, it has not yet been reported whether air pollution effects are significantly different for different age groups. This lack of information is the motivation for this study, which tests the hypothesis that air pollution effects on asthmatic hospital admissions are significantly different by age groups. Each air pollutant's effect on asthmatic hospital admissions by age groups was estimated separately. In this study, daily time-series data for hospital admission rates from seven cities in Korea from June 1999 through 2003 were analyzed. The outcome variable, daily hospital admission rates for asthma, was related to five air pollutants which were used as the independent variables, namely particulate matter <10 micrometers (μm) in aerodynamic diameter (PM10), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2). Meteorological variables were considered as confounders. Admission data were divided into three age groups: children (<15 years of age), adults (ages 15-64), and elderly (≥ 65 years of age). The adult age group was considered to be the reference group for each city. In order to estimate age-specific air pollution effects, the analysis was separated into two stages. In the first stage, Generalized Additive Models (GAMs) with cubic spline for smoothing were applied to estimate the age-city-specific air pollution effects on asthmatic hospital admission rates by city and age group. In the second stage, the Bayesian Hierarchical Model with non-informative prior which has large variance was used to combine city-specific effects by age groups. The hypothesis test showed that the effects of PM10, CO and NO2 were significantly different by age groups. Assuming that the air pollution effect for adults is zero as a reference, age-specific air pollution effects were: -0.00154 (95% confidence interval(CI)= (-0.0030,-0.0001)) for children and 0.00126 (95% CI = (0.0006, 0.0019)) for the elderly for PM 10; -0.0195 (95% CI = (-0.0386,-0.0004)) for children for CO; and 0.00494 (95% CI = (0.0028, 0.0071)) for the elderly for NO2. Relative rates (RRs) were 1.008 (95% CI = (1.000-1.017)) in adults and 1.021 (95% CI = (1.012-1.030)) in the elderly for every 10 μg/m3 increase of PM10 , 1.019 (95% CI = (1.005-1.033)) in adults and 1.022 (95% CI = (1.012-1.033)) in the elderly for every 0.1 part per million (ppm) increase of CO; 1.006 (95%CI = (1.002-1.009)) and 1.019 (95%CI = (1.007-1.032)) in the elderly for every 1 part per billion (ppb) increase of NO2 and SO2, respectively. Asthma hospital admissions were significantly increased for PM10 and CO in adults, and for PM10, CO, NO2 and SO2 in the elderly.^
Resumo:
Blood lead levels > 10 µg/dL are known to affect various areas of the brain that influence behavior and cause many other health problems in children. As a result, the Centers for Disease Control and Prevention (CDC) set the blood lead action level at 10 µg/dL. However, recent research provides evidence that blood lead levels <10 µg/dL also may lead to behavioral problems in children. With the recent increase in diagnosis of Attention-Deficit Hyperactivity Disorder (ADHD) in children in the U.S. it is important to determine possible environmental toxins such as lead that may play a role in causing ADHD symptoms. The aim of this systematic review of the literature was to identify recent published studies that examine an association between blood lead levels < 10 µg/dL and ADHD symptoms in children in order to summarize their findings and describe major gaps in the literature. Although available research is limited, the articles reviewed indicate that blood lead at levels much below the CDC action level of 10 µg/dL may affect a child's level of attention, hyperactivity, impulsivity and ADHD diagnosis. Additional prospective research is warranted in order to inform the revision of current blood lead action levels as well as better elucidate the relationship between lead and ADHD diagnoses.^
Resumo:
Indoor Air Quality (IAQ) can have significant implications for health, productivity, job performance, and operating cost. Professional experience in the field of indoor air quality suggests that high expectations (better than nationally established standards) (American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE)) of workplace indoor air quality lead to increase air quality complaints. To determine whether there is a positive association between expectations and indoor air quality complaints, a one-time descriptive and analytical cross-sectional pilot study was conducted. Area Safety Liaisons (n = 330) at University of Texas Health Science Center – Houston were asked to answer a questionnaire regarding their expectations of four workplace indoor air quality indicators i.e., (temperature, relative humidity, carbon dioxide, and carbon monoxide) and if they experienced and reported indoor air quality problems. A chi-square test for independence was used to evaluate associations among the variables of interest. The response rate was 54% (n = 177). Results did not show significant associations between expectation and indoor air quality. However, a greater proportion of Area Safety Liaisons who expected indoor air quality indicators to be better than the established standard experienced greater indoor air quality problems. Similarly, a slightly higher proportion of Area Liaisons who expected indoor air quality indicators to be better than the standard reported greater indoor air quality complaints. ^ The findings indicated that a greater proportion of Area Safety Liaisons with high expectations (conditions that are beyond what is considered normal and acceptable by ASHRAE) experienced greater indoor air quality discomfort. This result suggests a positive association between high expectations and experienced and reported indoor air quality complaints. Future studies may be able to address whether the frequency of complaints and resulting investigations can be reduced through information and education about what are acceptable conditions.^
Resumo:
The Renin-Angiotensin system (RAS) regulates blood pressure through its effects on vascular tone, renal hemodynamics, and renal sodium and fluid balance. The genes encoding the four major components of the RAS, angiotensinogen, renin, angiotensin I-converting enzyme (ACE), and angiotensin II receptor type 1 (AT1), have been investigated as candidate genes in the pathogenesis of essential hypertension. However, studies have primarily focused on small samples of diseased individuals, and, therefore, have provided little information about the determinants of interindividual variation in blood pressure (BP) in the general population.^ Using data from a large population-based sample from Rochester, MN, I have evaluated the contribution of variation in the region of the RAS genes to interindividual variation in systolic, diastolic, and mean arterial pressure in the population-at-large. Marker genotype data from four polymorphisms located within or very near these genes were first collected on 3,974 individuals from 583 randomly ascertained three-generation pedigrees. Haseman-Elston regression and variance component methods of linkage analysis were then carried out to estimate the proportion of interindividual variance in BP attributable to the effects of variation at these four measured loci.^ A significant effect of the ACE locus on interindividual variation in mean arterial pressure (MAP) was detected in a sample of siblings belonging to the youngest generation. After allowing for measured covariates, this effect accounted for 15-25% of the interindividual variance in MAP, and was even greater in a subset with a positive family history of hypertension. When gender-specific analyses were carried out, this effect was significant in males but not in females. Extended pedigree analyses also provided evidence for an effect of the ACE locus on interindividual variation in MAP, but no difference between males and females was observed. Circumstantial evidence suggests that the ACE gene itself may be responsible for the observed effects on BP, although the possibility that other genes in the region may be at play cannot be excluded.^ No definitive evidence for an effect of the renin, angiotensinogen, or AT1 loci on interindividual variation in BP was obtained in this study, suggesting that the impact of these genes on BP may not be great in the Caucasian population-at-large. However, this does not preclude a larger effect of these genes in some subsets of individuals, especially among those with clinically manifest hypertension or coronary heart disease, or in other populations. ^