3 resultados para Blackburn, J. K. P. (James Knox Polk), 1837-1923.

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Healthcare websites that are influential in healthcare decision-making must be evaluated for accuracy, readability and understandability by the average population. Most existing frameworks for designing and evaluating interactive websites focus on the utility and usability of the site. Although these are significant to the design of the basic site, they are not sufficient. We have developed an iterative framework that considers additional attributes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro incubation of acetylcholinesterase from brain tissue of several species with organophosphate compounds indicated that the concentrations required to inhibit 50% of acetylcholinesterase activity (IC(,50)) differed from species to species for the same compound (Murphy, et al., 1968; Andersen, et al., 1972, 1977 and 1978).^ The hypothesis that non-specific binding proteins (Lauwerys and Murphy, 1969a,b) exerts a protective effect on acetylcholinesterase, and thus cause the differences observed in IC(,50) studies was tested by a ('3)H-DFP binding experiment. It was found that differences in the amount of non-specific binding protein cannot explain the observed differences observed in IC(,50) studies.^ An alternative hypothesis, that acetylcholinesterase from different species have different affinities for binding and/or different rates of phosphorylation by organophosphate insecticides was tested by determining the apparent affinity constant (k(,a)) and apparent rate of phosphorylation (k(,p)). Kinetic studies indicated that acetylcholinesterases from different species have different sensitivities to inhibition by organophosphate insecticides, and the differences are due to different affinities for binding and/or different rates of phosphorylation by the same organophosphate compound.^ Studies of the spontaneous reactivation of acetylcholinesterase after inhibition by organophosphate insecticides also indicated that acetylcholinesterases from different species have different rates and extents of spontaneous reactivation. This further substantiates the hypothesis that acetylcholinesterases from different species have different kinetic characteristics with respect to organophosphate insecticides inhibition.^ Eleven paraoxon analogs were synthesized for a quantitative structure-activity relationship study. It was found that the electron-withdrawing power ((sigma)) and hydrophobicity ((PARAGR)) of the substituent are important in determining the anti-cholinesterase activity of paraoxon analogs. Thus, predictions of species differences in acetylcholinesterase sensitivities to paraoxon analogs can be made if the physicochemical parameters ((sigma) and (PARAGR)) of the substituents are known.^ In another approach, i.e. enzyme modeling, the sensitivity of rat brain acetylcholinesterase to organophosphate insecticides was used as the independent variable to predict the sensitivities of acetylcholinesterases from other species to the same compound. Regression equations were derived for each species based on nineteen organophosphate insecticides studied. It was found, that in addition to paraoxon analogs, this method is also applicable to other organophosphate compounds with wide variations in structure. Thus, the sensitivities of acetylcholinesterases from other species can also be predicted from the sensitivity of rat brain acetylcholinesterase. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mutagenicity study of the urinary metabolites of 2-aminonaphthalene was conducted to determine whether differences in metabolism between different acetylator phenotypes could account for a proposed mechanism of bladder carcinogenesis. This required the use of fast and slow acetylator rabbits with phenotypic similarities to humans. In the absence of available slow acetylators, it was necessary to inhibit fast acetylators. The proposed mechanism was that slow acetylators were at greater potential risk of bladder carcinogenesis due to low rates of acetylation, a detoxification mechanism for certain aromatic amines. The alternate metabolic pathway will be hydroxylation. The fast acetylators were proposed to exhibit lower risk of bladder carcinogenicity as a result of higher acetylation rates and less mutagenic metabolites.^ This hypothesis was approached by determining from in vitro mutagenicity assays with Salmonella typhimurium strains TA98 and TA100 whether different metabolites were mutagenic. The acetylation rate of each rabbit and a suitable method of acetylation inhibition were determined through oral exposure to dapsone and the acetylation inhibitor, K-p-aminosalicylic acid. Residues of dapsone and its acetylated metabolite were extracted from blood samples and analyzed by ultra-violet spectrometry using standard curves for each metabolite. The urine samples were concentrated on XAD-2 resin and analyzed both as whole urine concentrates and as isolated metabolites from spots on high performance thin layer chromatography plates. The major isolated spots were identified and quantified through extraction and analysis by high performance liquid chromatography when possible.^ Acetylation rate determination and inhibition were successfully demonstrated in rabbits. Significant mutagenicity was noted for several critical metabolites. None of the mutagenic metabolites were detected in higher concentration in the inhibited acetylators and thus, no clear relationship of metabolite concentration to bladder carcinogenesis was evident for the compounds analyzed. There was some evidence that the inhibitor may have affected critical enzyme systems other than acetylation alone. This would account for the lower concentrations of mutagenic hydroxylated compounds observed. ^