10 resultados para Birth-death Processes
em DigitalCommons@The Texas Medical Center
Resumo:
Epidermal growth factor receptor (EGFR) is a cell membrane tyrosine kinase receptor and plays a pivotal role in regulating cell growth, differentiation, cell cycle, and tumorigenesis. Deregulation of EGFR causes many diseases including cancers. Intensive investigation of EGFR alteration in human cancers has led to profound progress in developing drugs to target EGFR-mediated cancers. While exploring possible synergistic enhancement of therapeutic efficacy by combining EGFR tyrosine kinase inhibitors (TKI) with other anti-cancer agents, we observed that suberoylanilide hydroxamic acid (SAHA, a deacetylase inhibitor) enhanced TKI-induced cancer cell death, which further led us to question whether SAHA-mediated sensitization to TKI was associated with EGFR acetylation. What we know so far is that SAHA can inhibit class I and II histone deacetylases (HDACs), which could possibly preserve acetylation of underlying HDAC-targeted proteins including both histone and non-histone proteins. In addition, it has been reported that an HDAC inhibitor, TSA, enhanced EGFR phosphorylation in ovarian cancer cells. EGFR acetylation has also been reported to play a role in the regulation of EGFR endocytosis recently. These observations indicate that there might be an intrinsic correlation between acetylation and phosphorylation of EGFR. In other words, the interplay between EGFR acetylation and phosphorylation may contribute to HDAC inhibitors (HDACi)-augmented EGFR phosphorylation. In this investigation, we showed that CBP acetyltransferase acetylated EGFR in vivo. In response to EGF stimulation, CBP rapidly translocated from the nucleus to the cytoplasm. We also demonstrated protein-protein interaction between CBP and EGFR as well as the enhancement of EGFR acetylation by CBP. Moreover, EGFR acetylation enhanced EGFR tyrosine phosphorylation and augmented its association with Src kinase. Acetylation-deficient EGFR mutant (EGFR-K3R) significantly reduced the function and activity of EGFR. Furthermore, ectopic expression of EGFR-K3R mutant abrogated its ability to respond to EGF-induced cell proliferation, DNA synthesis, and anchorage-independent growth using cell-based assays and tumor growth in nude mice. In addition, we demonstrated that EGFR expression was associated with SAHA resistance in the treatment of cancer cells that overexpress EGFR. The knockdown of EGFR in MDA-MB-468 breast cancer cells could sensitize the cells to respond to SAHA. The overexpression of EGFR in SAHA-sensitive MDA-MB-453 breast cancer cells rendered the cells resistant to SAHA. Together, these findings suggest that EGFR plays an important role in SAHA resistance in breast carcinoma cells that we tested. The combination therapy of HDACi with TKI has been proposed for treating cancers with aberrant expression of EGFR. The evidence from pre-clinical or clinical trials demonstrated significant enhancement of therapeutic efficacy by using such a combination therapy. Our in vivo study also demonstrated that the combination of SAHA and TKI for the treatment of breast cancer significantly reduced tumor burden compared with either SAHA or TKI alone. The significance of our study elucidated another possible underlying molecular mechanism by which HDACi mediated sensitization to TKI. Our results unveiled a critical role of EGFR acetylation that regulates EGFR tyrosine phosphorylation and may further provide an experiment-based rationale for combinatorial targeted therapy.
Resumo:
BACKGROUND: It is unclear whether aggressive phototherapy to prevent neurotoxic effects of bilirubin benefits or harms infants with extremely low birth weight (1000 g or less). METHODS: We randomly assigned 1974 infants with extremely low birth weight at 12 to 36 hours of age to undergo either aggressive or conservative phototherapy. The primary outcome was a composite of death or neurodevelopmental impairment determined for 91% of the infants by investigators who were unaware of the treatment assignments. RESULTS: Aggressive phototherapy, as compared with conservative phototherapy, significantly reduced the mean peak serum bilirubin level (7.0 vs. 9.8 mg per deciliter [120 vs. 168 micromol per liter], P<0.01) but not the rate of the primary outcome (52% vs. 55%; relative risk, 0.94; 95% confidence interval [CI], 0.87 to 1.02; P=0.15). Aggressive phototherapy did reduce rates of neurodevelopmental impairment (26%, vs. 30% for conservative phototherapy; relative risk, 0.86; 95% CI, 0.74 to 0.99). Rates of death in the aggressive-phototherapy and conservative-phototherapy groups were 24% and 23%, respectively (relative risk, 1.05; 95% CI, 0.90 to 1.22). In preplanned subgroup analyses, the rates of death were 13% with aggressive phototherapy and 14% with conservative phototherapy for infants with a birth weight of 751 to 1000 g and 39% and 34%, respectively (relative risk, 1.13; 95% CI, 0.96 to 1.34), for infants with a birth weight of 501 to 750 g. CONCLUSIONS: Aggressive phototherapy did not significantly reduce the rate of death or neurodevelopmental impairment. The rate of neurodevelopmental impairment alone was significantly reduced with aggressive phototherapy. This reduction may be offset by an increase in mortality among infants weighing 501 to 750 g at birth. (ClinicalTrials.gov number, NCT00114543.)
Resumo:
Glutamate is the major excitatory neurotransmitter in the retina and serves as the synaptic messenger for the three classes of neurons which constitute the vertical pathway--the photoreceptors, bipolar cells and ganglion cells. In addition, the glutamate system has been localized morphologically, pharmacologically as well as molecularly during the first postnatal week of development before synaptogenesis occurs. The role which glutamate plays in the maturing visual system is complex but ranges from mediating developmental neurotoxicity to inducing neurite outgrowth.^ Nitric oxide/cGMP is a novel intercellular messenger which is thought to act in concert with the glutamate system in regulating a variety of cellular processes in the brain as well as retina, most notably neurotoxicity. Several developmental activities including programmed cell death, synapse elimination and synaptic reorganization are possible functions of cellular regulation modulated by nitric oxide as well as glutamate.^ The purpose of this thesis is to (1) biochemically characterize the endogenous pools of glutamate and determine what fraction exists extracellularly; (2) examine the morphological expression of NO producing cells in developing retina; (3) test the functional coupling of the NMDA subtype of glutamate receptor to the NO system by examining neurotoxicity which has roles in both the maturing and adult retina.^ Biochemical sampling of perfusates collected from the photoreceptor surface of ex vivo retina demonstrated that although the total pool of glutamate present at birth is relatively modest, a high percentage resides in extracellular pools. As a result, immature neurons without significant synaptic connections survive and develop in a highly glutamatergic environment which has been shown to be toxic in the adult retina.^ The interaction of the glutamate system with the NO system has been postulated to regulate neuronal survival. We therefore examined the developmental expression of the enzyme responsible for producing NO, nitric oxide synthase (NOS), using an antibody to the constitutive form of NOS found in the brain. The neurons thought to produce the majority of NO in the adult retina, a subpopulation of widefield amacrine cells, were not immunoreactive until the end of the second postnatal week. However, a unique developmental expression was observed in the ganglion cell layer and developing outer nuclear layer of the retina during the first postnatal week. We postulate NO producing neurons may not be present in a mature configuration therefore permitting neuronal survival in a highly glutamatergic microenvironment and allowing NO to play a development-specific role at this time.^ The next set of experiments constituted a functional test of the hypothesis that the absence of the prototypic NO producing cells in developing retina protects immature neurons against glutamate toxicity. An explant culture system developed in order to examine cellular responses of immature and adult neurons to glutamate toxicity showed that immature neurons were affected by NMDA but were less responsive to NMDA and NO mediated toxicity. In contrast, adult explants exhibited significant NMDA toxicity which was attenuated by NMDA antagonists, 2-amino-5-phosphonovaleric acid (APV), dextromethorphan (Dex) and N$\rm\sp{G}$-D-methyl arginine (metARG). These results indicated that pan-retinal neurotoxicity via the NMDA receptor and/or NO activation occurred in the adult retina but was not significant in the neonate. (Abstract shortened by UMI.) ^
Use of a hypomorphic allele of myogenin to analyze Myogenin-dependent processes in mouse development
Resumo:
Myogenin is a muscle-specific transcription factor essential for skeletal muscle differentiation. A severe reduction in the number of fused myotubes is seen in myogenin-null mice, and the expression of genes characteristic of differentiated skeletal muscle is reduced. Additionally, sternebrae defects are seen in myogenin-null mice, a secondary defect in the sternal cartilage precursors. Very little is known about the quantitative requirement for myogenin in muscle differentiation and thoracic skeletal development in vivo. In this thesis I describe experiments utilizing a mouse line harboring a hypomorphic allele of myogenin, generated by gene targeting techniques in embryonic stem cells. The nature of the hypomorphism was due to lowered levels of myogenin from this allele. In embryos homozygous for the hypomorphic allele, normal sternum formation and extensive muscle differentiation was observed. However, muscle hypoplasia and reduced muscle-specific gene expression were apparent in these embryos, and the mice were not viable after birth. These results suggest skeletal muscle differentiation is highly sensitive to the absolute amounts of myogenin, and reveal distinct threshold requirements for myogenin in skeletal muscle differentiation, sternum formation, and viability in vivo. The hypomorphic allele was utilized as a genetically sensitized background to identify other components of myogenin-mediated processes. Using a candidate gene approach I crossed null mutations in MEF2C and MRF4 into the hypomorphic background and examined whether these mutations affected muscle differentiation and skeleton formation in the myogenin hypomorph. Although MEF2C mutation did not affect any phenotypes seen in the hypomorphic background, MRF4 was observed to be an essential component of myogenin-mediated processes of thoracic skeletal development. Additionally, the hypomorphic allele was very sensitive to genetic effects, suggesting the existence of mappable genetic modifiers of the hypomorphic allele of myogenin. ^
Resumo:
Epidemiologic case-control studies of small groups of childhood nervous system tumor patients have suggested that parental employment in occupations with exposure to hydrocarbons is a risk factor for disease. The main focus of this case-control study was to assess the paternal occupation at the time of birth of offspring who later developed childhood intracranial and spinal tumors. All children under 15 years of age dying of such tumors in Texas, during the period 1964-1980, were selected as cases. Disease and demographic data were abstracted from death certificates. The birth certificate for each child of the final group of 499 cases was located and parental occupation information, as well as demographic and obstetric data, were collected. The comparison group consisted of a random sample from all Texas live births with the same birth year, race and sex distribution as the cases.^ The paternal occupations were categorized into broad classifications of those involving hydrocarbon exposure versus those that did not, based on the occupation criteria used in the previous studies. Odds ratios did not indicate any increased risk associated with general paternal hydrocarbon exposure in the workplace. In prior studies, increased risk estimates were detected with narrower groups of occupations involving exposure to hydrocarbon materials. The data from this study were classified according to these groups, and again, no increased risks were indicated except for a statistically insignificant but elevated odds ratio for fathers who were paper and pulp mill workers.^ Odds ratios were calculated for specific occupations and industries previously implicated as risk factors. Significantly associated odds ratios (OR) were detected for electricians (OR = 3.5), especially those working for construction companies (OR = 10.0), for employment in the printing occupations (OR = 4.5), particularly graphic arts workers (OR = 21.9), and in the electronics and electronic machinery industries (OR = 3.5). Analysis of the petroleum refining and chemical industries, which were not found in previous study populations, revealed significantly elevated odds ratios of 3.0 for occupations with probable heavy exposure to chemicals and petroleum compounds and 10.0 for salesmen of chemical products. ^
Resumo:
Birth defects occur in 1 of every 33 babies born in the United States, and are the leading cause of infant death. Mothers using contraceptives that become pregnant may continue to use their contraceptives after their first missed menstrual period, thus exposing their baby in utero to the contraceptive product. Progesterone is also sometimes prescribed during the first trimester of pregnancy to mothers with a history of miscarriages or infertility problems. To ensure the safety of these products, it is important to investigate whether there is an increased occurrence of babies born with birth defects to mothers using various contraceptive methods or progesterone in early pregnancy. Using data from the National Birth Defects Prevention Study (NBDPS), an ongoing multi-state, population based case-control study, this study assessed maternal exposures to IUDs, spermicides, condoms and progesterone in early pregnancy. ^ Progesterone used for threatened miscarriage during the first three months of pregnancy was associated with an increased occurrence of hypoplastic left heart (adjusted odds ratios (OR) 2.24, 95% CI 1.13-4.21), perimembranous ventricular septal defects (OR 1.64, 95% CI 1.10-2.41), septal associations (OR 2.52, 95% CI 1.45-4.24), esophageal atresia (OR 1.82, 95% CI 1.04-3.08), and hypospadias (OR 2.12, 95% CI 1.41-3.18). Mothers using progesterone for injectable contraception had increased (OR > 2.5), but insignificant odds ratios for anencephaly, septal associations, small intestinal atresias and omphalocel. Progesterone used for fertility was not associated with an increased occurrence of any birth defects examined. ^ Mothers using progesterone for fertility assistance and threatened miscarriage were very similar with respect to their demographics and pregnancy history. They also both reported similar types of progesterone. Thus, if progesterone was a causal risk factor for birth defects we would have expected to observe similar increases in risk among mothers using progesterone for both indications. Because we predominantly observed increased associations among mothers using progesterone for threatened miscarriage but not fertility assistance, it is possible the increased associations we observed were confounded by indication (i.e. progesterone was administered for vaginal bleeding which occurred as a sequelae to the formation of a congenital anomaly. ^ No significant increased associations were observed between maternal spermicide use during pregnancy and 26 of 27 types of structural malformations. While multiple statistical tests were performed we observed first trimester maternal spermicide use to be associated with a significant increased occurrence of perimembranous ventricular septal defects (OR 2.21, 95% CI 1.16-4.21). A decreased occurrence (OR < 1.0) was observed for several categories of birth defects among mothers who conceived in the first cycle after discontinuing the use of spermicides (22 of 28) or male condoms (23 of 33). ^ Overall the percent of IUD use was similar between mothers of controls and mothers of all cases in aggregate (crude OR 1.05, 95% CI 0.61-1.84). Power was limited to detect significant associations between IUD use and birth defects, however mothers using an IUD in the month immediately prior to conception or during pregnancy were not associated with an increase of birth defects. Limb defects and amniotic band sequence previously reported to be associated with IUD use during pregnancy were not found to occur among any mothers reporting the use of an IUD during pregnancy.^
Resumo:
Ubiquitination is an essential process involved in basic biological processes such as the cell cycle and cell death. Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Subsequently, ubiquitin is transferred to target proteins via ubiquitin ligases (E3). Defects in ubiquitin conjugation have been implicated in several forms of malignancy, the pathogenesis of several genetic diseases, immune surveillance/viral pathogenesis, and the pathology of muscle wasting. However, the consequences of partial or complete loss of ubiquitin conjugation in multi-cellular organisms are not well understood. Here, we report the characterization of nba1, the sole E1 in Drosophila. We have determined that weak and strong nba1 alleluias behave genetically different and sometimes in opposing phenotypes. For example, weak uba1 alleluias protect cells from cell death whereas cells containing strong loss-of-function alleluias are highly apoptotic. These opposing phenotypes are due to differing sensitivities of cell death pathway components to ubiquitination level alterations. In addition, strong uba1 alleluias induce cell cycle arrest due to defects in the protein degradation of Cyclins. Surprisingly, clones of strong uba1 mutant alleluias stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner resulting in severe overgrowth phenotypes in the mosaic fly. I have determined that the observed overgrowth phenotypes were due to a failure to downregulate the Notch signaling pathway in nba1 mutant cells. Aberrant Notch signaling results in the secretion of a local cytokine and activation of JAK/STAT pathway in neighboring cells. In addition, we elucidated a model describing the regulation of the caspase Dronc in surviving cells. Binding of Dronc by its inhibitor Diap1 is necessary but not sufficient to inhibit Dronc function. Ubiquitin conjugation and Uba1 function is necessary for the negative regulation of Dronc. ^
Resumo:
The paradoxically low infant mortality rates for Mexican Americans in Texas have been attributed to inaccuracies in vital registration and idiosyncracies in Mexican migration in rural areas along the U.S.-Mexico border. This study examined infant (IMR), neonatal (NMR), and postneonatal (PNMR) mortality rates of Mexican Americans in an urban, non-border setting, using linked birth and death records of the 1974-75 single live birth cohort (N = 68,584) in Harris County, Texas, which includes the city of Houston and is reported to have nearly complete birth and death registration. The use of parental nativity with the traditional Spanish surname criterion made it possible to distinguish infants of Mexican-born immigrants from those of Blacks, Anglos, other Hispanics, and later-generation, more Anglicized Mexican Americans. Mortality rates were analyzed by ethnicity, parental nativity, and cause of death, with respect to birth weight, birth order, maternal age, legitimacy status, and time of first prenatal care.^ While overall IMRs showed Spanish surname rates slightly higher than Anglo rates, infants of Mexican-born immigrants had much lower NMRs than did Anglos, even for moderately low birth weight infants. However, among infants under 1500 grams, presumably unable to be discharged home in the neonatal period, Mexican Americans had the highest NMR. The inconsistency suggested unreported deaths for Mexican American low birth weight infants after hospital discharge. The PNMR of infants of Mexican immigrants was also lower than for Anglos, and the usual mortality differentials were reversed: high-risk categories of high birth order, high maternal age, and late/no prenatal care had the lowest PNMRs. Since these groups' characteristics are congruent with those of low-income migrants, the data suggested the possibility of migration losses. Cause of death analysis suggested that prematurity and birth injuries are greater problems than heretofore recognized among Mexican Americans, and that home births and "shoebox burials" may be unrecorded even in an urban setting.^ Caution is advised in the interpretation of infant mortality rates for a Spanish surname population of Mexican origin, even in an urban, non-border area with reportedly excellent birth and death registration. ^
Resumo:
Evaluation of the impact of a disease on life expectancy is an important part of public health. Potential gains in life expectancy (PGLE) that can properly take into account the competing risks are an effective indicator for measuring the impact of the multiple causes of death. This study aimed to measure the PGLEs from reducing/eliminating the major causes of death in the USA from 2001 to 2008. To calculate the PGLEs due to the elimination of specific causes of death, the age-specific mortality rates for heart disease, malignant neoplasms, Alzheimer disease, kidney diseases and HIV/AIDS and life table constructing data were obtained from the National Center for Health Statistics, and the multiple decremental life tables were constructed. The PGLEs by elimination of heart disease, malignant neoplasms or HIV/AIDS continued decreasing from 2001 to 2008, but the PGLE by elimination of Alzheimer's disease or kidney diseases revealed increased trends. The PGLEs (by years) for all race, male, female, white, white male, white female, black, black male and black female at birth by complete elimination of heart disease 2001–2008 were 0.336–0.299, 0.327–0.301, 0.344–0.295, 0.360–0.315, 0.349–0.317, 0.371–0.316,0.278–0.251, 0.272–0.255, and 0.282–0.246 respectively. Similarly, the PGLEs (by years) for all race, male, female, white, white male, white female, black, black male and black female at birth by complete elimination of malignant neoplasms, Alzheimer's disease, kidney disease or HIV/AIDS 2001–2008 were also uncovered, respectively. Most diseases affect specific population, such as, HIV/AIDS tends to have a greater impact on people of working age, heart disease and malignant neoplasms have a greater impact on people over 65 years of age, but Alzheimer's disease and kidney diseases have a greater impact on people over 75 years of age. To measure the impact of these diseases on life expectancy in people of working age, partial multiple decremental life tables were constructed and the PGLEs were computed by partial or complete elimination of various causes of death during the working years. Thus, the results of the study outlined a picture of how each single disease could affect the life expectancy in age-, race-, or sex-specific population in USA. Therefore, the findings would not only assist to evaluate current public health improvements, but also provide useful information for future research and disease control programs.^
Resumo:
Objective: To perform a systematic review of the literature on SIDS and SUID deaths concentrated in the African-American community, describe health education and policy recommendations and recommend a new approach that may aid in decreasing the disparity of infant mortality in the African-American community. ^ Methods: The PubMed database was systematically searched to identify relevant articles for final review and analysis. Using the CASP 2006 system to critique literature, twelve articles were found that met inclusion and exclusion criteria. ^ Results: Evidence in the literature confirmed there was a current disparity among African Americans' infant mortality rates in comparison to other US ethnic groups. The underlying reasons for these disparities included the following maternal and infant characteristics: mothers younger than eighteen, having more than one live infant, having a high school education or less, never been married, and have infants born preterm or with low birth weight. Maternal smoking, substance abuse, and breastfeeding did not have a significant impact on infant sleep environments among African Americans. ^ Conclusion: Tailored health education programs at the community level, better access to pre-pregnancy and prenatal care, and increased maternal perception of risk that is relevant to the infants sleeping environment are all possible solutions that may decrease African American infant mortality rates.^