5 resultados para Biotin Protein Ligase

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The length of time that integral membrane proteins reside on the plasma membrane is regulated by endocytosis, a process that can inactivate these proteins by removing them from the membrane and may ultimately result in their degradation. Proteins are internalized and pass through multiple distinct intracellular compartments where targeting decisions determine their fate. Membrane proteins initially enter early endosomes, and subsequently late endosomes/multivesicular bodies (MVBs), before being degraded in the lysosome. The MVB is a subset of late endosomes characterized by the appearance of small vesicles in its luminal compartment. These vesicles contain cargo proteins sorted from the limiting membrane of the MVB. Proteins not sorted into luminal vesicles remain on the MVB membrane, from where they may be recycled back to the plasma membrane. In the case of receptor tyrosine kinases (RTKs), such as epidermal growth factor (EGF) receptor, this important sorting step determines whether a protein returns to the surface to participate in signaling, or whether its signaling properties are inactivated through its degradation in the lysosome. Hrs is a protein that resides on endosomes and is known to recruit sorting complexes that are vital to this sorting step. These sorting complexes are believed to recognize ubiquitin as sorting signals. However, the link between MVB sorting machinery and the ubiquitination machinery is not known. Recently, Hrs was shown to recruit and bind an E3 ubiquitin ligase, UBE4B, to endosomes. In an assay that is able to measure cargo movement, the disruption of the Hrs-UBE4B interaction showed impaired sorting of EGF receptor into MVBs. My hypothesis is that UBE4B may be the connection between MVB sorting and ubiquitination. This study addresses the role of UBE4B in the trafficking and ubiquitination of EGF receptor. I created stable cell lines that either overexpresses UBE4B or expresses a UBE4B with no ligase activity. Levels of EGF receptor were analyzed after certain periods of ligand-induced receptor internalization. I observed that higher expression levels of UBE4B correspond to increased degradation of EGF receptor. In an in vitro ubiquitination assay, I also determined that UBE4B mediates the ubiquitination of EGF receptor. These data suggest that UBE4B is required for EGFR degradation specifically because it ubiquitinates the receptor allowing it to be sorted into the internal vesicles of MVBs and subsequently degraded in lysosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artemis, a member of the SNM1 gene family, is one of the six known components of the non-homologous end joining pathway. It is a multifunctional phospho-protein that has been shown to be modified by the phosphatidylinositol 3-kinases (PIKs) DNA-PKcs, ATM and ATR in response to a variety of cellular stresses. Artemis has important roles in V(D)J recombination, DNA double strand breaks repair and damage-induced cell-cycle checkpoint regulation. The detailed mechanism by which Artemis mediates its functions in these cellular pathways needs to be further elucidated. My work presented here demonstrates a new function for Artemis in cell cycle regulation as a component of Cullin-based E3 ligase complex. I show that Artemis interacts with Cul4A-DDB1 ligase complex via a direct interaction with the substrate-specific receptor DDB2, and deletion mapping analysis shows that part of the Snm1 domain of Artemis is responsible for this interaction. Additionally, Artemis also interacts with p27, a substrate of Cul4A-DDB1 complex, and both DDB2 and Artemis are required for the degradation of p27 mediated by this complex. Furthermore, I show that the regulation of p27 by Artemis and DDB2 is critical for cell cycle progression in normally proliferating cells and in response to serum withdrawal. Finally, I provide evidence showing that Artemis may be also a part of other Cullin-based E3 ligase complexes, and it has a role in controlling p27 levels in response to different cellular stress, such as UV irradiation. These findings suggest a novel pathway to regulate p27 protein level and define a new function for Artemis as an effector of Cullin-based E3-ligase mediated ubiquitylation, and thus, a cell cycle regulator in proliferating cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IkappaB kinase beta (IKKbeta) is involved in tumor development and progression through activation of the nuclear factor (NF)-kappaB pathway. However, the molecular mechanism that regulates IKKbeta degradation remains largely unknown. Here, we show that a Cullin 3 (CUL3)-based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for IKKbeta ubiquitination. Depletion of KEAP1 led to the accumulation and stabilization of IKKbeta and to upregulation of NF-kappaB-derived tumor angiogenic factors. A systematic analysis of the CUL3, KEAP1, and RBX1 genomic loci revealed a high percentage of genome loss and missense mutations in human cancers that failed to facilitate IKKbeta degradation. Our results suggest that the dysregulation of KEAP1-mediated IKKbeta ubiquitination may contribute to tumorigenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA ligase and DNA polymerase play important roles in DNA replication, repair, and recombination. Frequencies of spontaneous and chemical- and physical-induced mutations are correlated to the fidelity of DNA replication. This dissertation elucidates the mechanisms of the DNA ligation reaction by DNA ligases and demonstrates that human DNA ligase I and DNA polymerase $\alpha$ are the molecular targets for two metal ions, Zn$\sp{2+}$ and Cd$\sp{2+},$ and an anticancer drug, F-ara-ATP.^ Human DNA ligases were purified to homogeneity and their AMP binding domains were mapped. Although their AMP-binding domains are similar, there could be difference between the two ligases in their DNA binding domains.^ The formation of the AMP-DNA intermediate and the successive ligation reaction by human DNA ligases were analyzed. Both reactions showed their substrate specificity for ligases I and II, required Mg2+, and were inhibited by ATP.^ A protein inhibitor from HeLa cells and specific for human DNA ligase I but not ligase II and T4 ligase was discovered. It reversibly inhibited DNA ligation activity but not the AMP-binding activity due to the formation of a reversible ligase I-inhibitor complex.^ F-ara-ATP inhibited human DNA ligase I activity by competing with ATP for the AMP-binding site of DNA ligase I, forming a ligase I-F-ara-AMP complex, as well as when it was incorporated at 3$\sp\prime$-terminus of DNA nick by DNA polymerase $\alpha.$^ All steps of the DNA ligation reaction were inhibited by Zn$\sp{2+}$ and Cd$\sp{2+}$ in a concentration-dependent manner. Both ions did not show the ability to change the fidelity of DNA ligation reaction catalyzed by human DNA ligase I. However, Zn$\sp{2+}$ and Cd$\sp{2+}$ showed their contradictory effects on the fidelity of the reaction by human DNA polymerase $\alpha.$ Zn$\sp{2+}$ decreased the frequency of misinsertion but less affected that of mispair extension. On the contrary, Cd$\sp{2+}$ increased the frequencies of both misinsertion and mispair extension at very low concentration. Our data provided strong evidence in the molecular mechanisms for the mutagenicity of zinc and cadmium, and were comparable with the results previously reported. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation of proteins by the ubiquitin proteasome system is essential for cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). During nutrient deprivation, AMPK is activated and intracellular proteolysis is enhanced through the ubiquitin proteasome system (UPS). Whether AMPK plays a role in protein degradation through the UPS in the heart is not known. Here I present data in support of the hypothesis that AMPK transcriptionally regulates key players in the UPS, which, under extreme conditions can be detrimental to the heart. The ubiquitin ligases MAFbx /Atrogin-1 and MuRF1, key regulators of protein degradation, and AMPK activity are increased during nutrient deprivation. Pharmacologic and genetic activation of AMPK is sufficient for the induction of MAFbx/Atrogin-1 and MuRF1 in cardiomyocytes and in the heart in vivo. Comprehensive experiments demonstrate that the molecular mechanism by which AMPK regulates MuRF1 expression is through the transcription factor myocyte enhancer factor 2 (MEF2), which is involved in stress response and cardiomyocyte remodeling. MuRF1 is required for AMPK-mediated protein degradation through the UPS in cardiomyocytes. Consequently, the absence of MuRF1 during chronic fasting preserves cardiac function, possibly by limiting degradation of critical metabolic enzymes. Furthermore, during cardiac hypertrophy, chronic activation of AMPK also leads to cardiac dysfunction, possibly through enhanced protein degradation and metabolic dysregulation. Collectively, my findings demonstrate that AMPK regulates expression of ubiquitin ligases which are required for UPS-mediated protein degradation in the heart. Based on these results, I propose that specific metabolic signals may serve as modulators of intracellular protein degradation in the heart.