8 resultados para Biosynthetic-enzymes

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipids are the major component of cellular membranes. In addition to its structural role, phospholipids play an active and diverse role in cellular processes. The goal of this study is to identify the genes involved in phospholipid biosynthesis in a model eukaryotic system, Saccharomyces cerevisiae. We have focused on the biosynthetic steps localized in the inner mitochondrial membrane; hence, the identification of the genes encoding phosphatidylserine decarboxylase (PSD1), cardiolipin synthase (CLS1), and phosphatidylglycerophosphate synthase (PGS1).^ The PSD1 gene encoding a phosphatidylserine decarboxylase was cloned by complementation of a conditional lethal mutation in the homologous gene in Escherichia coli strain EH150. Overexpression of the PSD1 gene in wild type yeast resulted in 20-fold amplification of phosphatidylserine decarboxylase activity. Disruption of the PSD1 gene resulted in 20-fold reduction of decarboxylase activity, but the PSD1 null mutant exhibited essentially normal phenotype. These results suggest that yeast has a second phosphatidylserine decarboxylation activity.^ Cardiolipin is the major anionic phospholipid of the inner mitochondrial membrane. It is thought to be an essential component of many biochemical functions. In eukaryotic cells, cardiolipin synthase catalyzes the final step in the synthesis of cardiolipin from phosphatidylglycerol and CDP-diacylglycerol. We have cloned the gene CLS1. Overexpression of the CLS1 gene product resulted in significantly elevated cardiolipin synthase activity, and disruption of the CLS1 gene, confirmed by PCR and Southern blot analysis, resulted in a null mutant that was viable and showed no petite phenotype. However, phospholipid analysis showed undetectable cardiolipin level and an accumulation of phosphatidylglycerol. These results support the conclusion that CLS1 encodes the cardiolipin synthase of yeast and that normal levels of cardiolipin are not absolutely essential for survival of the cell.^ Phosphatidylglycerophosphate (PGP) synthase catalyzes the synthesis of PGP from CDP-diacylglycerol and glycerol-3-phosphate and functions as the committal and rate limiting step in the biosynthesis of cardiolipin. We have identified the PGS1 gene as encoding the PGP synthase. Overexpression of the PGS1 gene product resulted in over 15-fold increase in in vitro PGP synthase activity. Disruption of the PGS1 gene in a haploid strain of yeast, confirmed by Southern blot analysis, resulted in a null mutant strain that was viable but had significantly altered phenotypes, i.e. inability to grow on glycerol and at $37\sp\circ$C. These cells showed over a 10-fold decrease in PGP synthase activity and a decrease in both phosphatidylglycerol and cardiolipin levels. These results support the conclusion that PGS1 encodes the PGP synthase of yeast and that neither phosphatidylglycerol nor cardiolipin are absolutely essential for survival of the cell. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amine-containing phospholipid synthesis in Saccharomyces cerevisiae starts with the conversion of CDP-diacylglycerol (CDP-DAG) and serine to phosphatidylserine (PS) while phosphatidylinositol (PI) is formed from CDP-DAG and inositol (derived from inositol-1-phosphate). In this study a gene (CDS1) encoding CDP-DAG synthase in S. cerevisiae was isolated and identified. The CDS1 gene encodes the majority, if not all, of the synthase activity, and is essential for cell growth. Overexpression of the CDS1 gene resulted in an elevation in the apparent initial rate of synthesis and also steady-state level of PI relative to PS in both wild type yeast and the cds1 mutant. Down-regulation of CDS1 expression resulted in an inositol excretion phenotype and an opposite effect on the above phospholipid synthesis in the cds1 mutant. This regulation of phospholipid biosynthesis is mediated by changes of the phospholipid biosynthetic enzymes via a mechanism independent of the expression of the INO2-OPI1 regulatory genes. Reduction in the level of CDP-DAG synthase activity resulted in an increase in PS synthase activity which followed a similar change in the CHO1/PSS (encodes PS synthase) mRNA level. INO1 (encodes inositol-1-phosphate synthase) mRNA also increased but only after CDP-DAG synthase activity fell below the wild type level. PI synthase activity followed the decrease of the CDP-DAG synthase activity, but there was no parallel change in the level of PIS1 mRNA. A G$\sp{305}$/A$\sp{305}$ point mutation within the CDS1 gene which causes the cdg1 phenotype was identified. A human cDNA clone encoding CDP-DAG synthase activity was characterized by complementation of the yeast cds1 null mutant. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A CDP-diacylglycerol dependent phosphatidylserine synthase was detected in three species of gram-positive bacilli, viz. Bacillus licheniformis, Bacillus subtilis and Bacillus megaterium; the enzyme in B. licheniformis was studied in detail. The subcellular distribution experiments in cell-free extracts of B. licheniformis using differential centrifugation, sucrose gradient centrifugation and detergent solubilization showed the phosphatidylserine synthase to be tightly associated with the membrane. The enzyme was shown to have an absolute requirement for divalent metal ion for activity with a strong preference for manganese. The enzyme activity was completely dependent upon the addition of CDP-diacylglycerol to the assay system; the role of the liponucleotide was rigorously shown to be that of phosphatidyl donor and not just a detergent-like stimulator. This enzyme was then solubilized from B. licheniformis membranes and purified to near homogeneity. The purification procedure consisted of CDP-diacylglycerol-Sepharose affinity chromatography followed by substrate elution from blue-dextran Sepharose. The purified preparation showed a single band with an apparent minimum molecular weight of 53,000 when subjected to SDS polyacrylamide gel electrophoresis. The preparation was free of any phosphatidylglycerophosphate synthase, CDP-diacylglycerol hydrolase and phosphatidylserine hydrolase activities. The utilization of substrates and formation of products occurred with the expected stoichiometry. Radioisotopic exchange patterns between related substrate and product pairs suggest a sequential BiBi reaction as opposed to the ping-pong mechanism exhibited by the well studied phosphatidylserine synthase of Escherichia coli. Proteolytic digestion of the enzyme yielded a smaller active form of the enzyme (41,000 daltons) which appears to be less prone to aggregation.^ This has been the first detailed study in a well-defined bacillus species of the enzyme catalyzing the CDP-diacylglycerol-dependent formation of phosphatidylserine; this reaction is the first committed step in the biosynthetic pathway to the major membrane component, phosphatidylethanolamine. Further study of this enzyme may lead to understanding of new mechanisms of phosphatidyl transfer and novel modes of control of phospholipid biosynthetic enzymes. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals with Lynch syndrome are predisposed to cancer due to an inherited DNA mismatch repair gene mutation. However, there is significant variability observed in disease expression likely due to the influence of other environmental, lifestyle, or genetic factors. Polymorphisms in genes encoding xenobiotic-metabolizing enzymes may modify cancer risk by influencing the metabolism and clearance of potential carcinogens from the body. In this retrospective analysis, we examined key candidate gene polymorphisms in CYP1A1, EPHX1, GSTT1, GSTM1, and GSTP1 as modifiers of age at onset of colorectal cancer among 257 individuals with Lynch syndrome. We found that subjects heterozygous for CYP1A1 I462V (c.1384A>G) developed colorectal cancer 4 years earlier than those with the homozygous wild-type genotype (median ages, 39 and 43 years, respectively; log-rank test P = 0.018). Furthermore, being heterozygous for the CYP1A1 polymorphisms, I462V and Msp1 (g.6235T>C), was associated with an increased risk for developing colorectal cancer [adjusted hazard ratio for AG relative to AA, 1.78; 95% confidence interval, 1.16-2.74; P = 0.008; hazard ratio for TC relative to TT, 1.53; 95% confidence interval, 1.06-2.22; P = 0.02]. Because homozygous variants for both CYP1A1 polymorphisms were rare, risk estimates were imprecise. None of the other gene polymorphisms examined were associated with an earlier onset age for colorectal cancer. Our results suggest that the I462V and Msp1 polymorphisms in CYP1A1 may be an additional susceptibility factor for disease expression in Lynch syndrome because they modify the age of colorectal cancer onset by up to 4 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike most carbohydrates, sialic acids have a restricted distribution in nature, being present in higher animals and in certain bacteriae. Unfortunately, most studies have not taken into account the fact that the parent sialic acid molecules, N-acetyl(or N-glycolyl)-neuraminic acid can be O-substituted at the 4, 7, 8 and 9 positions, generating many compounds and isomers. The approach and results of this research study demonstrates that proportions of non-, mono-, di-, and tri-O-acetylated sialic acids can be identified and quantitated on normal and malignant human cells. This was accomplished using a paper chromatographic technique to isolate and resolve individual species of non and O-substituted sialic acids. The chemical nature of these O-substituents, as an acetyl ester, was determined on the basis of chemical degradation, enzymatic and fast atom bombardment-mass spectrometry analysis.^ The working hypothesis of this study, that O-acetylated sialic acids are expressed in a restricted manner on normal and malignant cells, was confirmed using the above experimental approach; which identified mono-, di-, and tri-O-acetylated sialic acids on a variety of normal and malignant human cells. These O-acetylated sialic acids were expressed in restricted manner on subpopulations and subcellular fractions of PHL melanoma cells. Aberrant expression of O-acetylated sialic acids was associated with adenocarcinoma of the colon, leading to a nearly complete loss of di- and tri-O-acetylated sialic acids.^ Thus, the ability to isolate and identify biosynthetically radiolabeled O-acetylated sialic acids offers an efficient method of monitoring the expression of O-acetylated sialic acids in biochemical and cellular interactions. Furthermore, the ability to identify abnormal ratios of O-acetylated sialic acids in the human colon, represents a possible diagnostic tool to evaluate and identify patients who may be genetically or culturally predisposed to the development of adenocarcinoma of the colon. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphatidylinositol 3-kinase (PI3K) generates membrane phospholipids that serve as second messengers to recruit signaling proteins to plasma membrane consequently regulating cell growth and survival. PI3K is a heterodimer consisting of a catalytic p110 subunit and a regulatory p85 subunit. Association of the p85 with other signal proteins is critical for induced PI3K activation. Activated PI3K, in turn, leads to signal flows through a variety of PI3K effectors including PDK1, AKT, GSK3, BAD, p70 S6K and NFκB. The PI3K pathway is under regulation by multiple signal proteins representing cross-talk between different signaling cascades. In this study, we have evaluated the role of protein kinase C family kinases on signaling through PI3K at multiple levels. Firstly, we observed that the action of PKC specific inhibitors like Ro-31-8220 and GF109203X was associated with an increased AKT phosphorylation and activity, suggesting that PKC kinases might play a negative role in the regulation of PI3K pathway. Then, we demonstrated the stimulation of AKT by PKC inhibition was dependent on functional PI3K enzyme and able to be transmitted to the AKT effector p70 S6K. Furthermore, we showed an inducible physical association between the PKCζ isotype and AKT, which was accompanied by an attenuated AKT activity. However, a kinase-dead form of PKC failed to affect AKT. In the second part of our research we revealed the ability of a different PKC family member, PKCδ to bind to the p85 subunit of PI3K in response to oxidative stress, a process requiring the activity of src tyrosine kinases. The interaction was demonstrated to be a direct and specific contact between the carboxyl terminal SH2 domain of p85 and tyrosine phosphorylated PKCδ. Several different types of agonists were capable to induce this association including tyrosine kinases and phorbol esters with PKCδ tyrosine phosphorylation being integral components. Finally, the PKCδ-PI3K complex was related to a reduction in the AKT phosphorylation induced by src. A kinase-deficient mutant of PKCδ was equally able to inhibit AKT signal as the wild type, indicative of a process independent of PKCδ catalytic activity. Altogether, our data illustrate different PKC isoforms regulating PI3K pathway at multiple levels, suggesting a mechanism to control signal flows through PI3K for normal cell activities. Although further investigation is required for full understanding of the regulatory mechanism, we propose that complex formation of signal proteins in PI3K pathway and specific PKC isoforms plays important role in their functional linkage. ^