1 resultado para BiP

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OSW-1 is a natural compound found in the bulbs of Orninithogalum saudersiae, a member of the lily family. This compound exhibits potent antitumor activity in vitro with the IC50 values in the low nanomolar concentration range and demonstrating its ability to kill drug resistant cancer cells. In an effort to discover the unknown mechanism of action of this novel compound as a potential anticancer agent, the main objective of this research project was to test the cytotoxicity of OSW-1 against various cancer lines, and to elucidate the biochemical and molecular mechanism(s) responsible for the anticancer activity of OSW-1. My initial investigation revealed that OSW-1 is effective in killing various cancer cells including pancreatic cancer cells and primary leukemia cells resistant to standard chemotherapeutic agents, and that non-malignant cells were less sensitive to this compound. Further studies revealed that in leukemia cells, OSW-1 causes a significant increase in cytosolic calcium and activates rapid calcium-dependent apoptosis by the intrinsic pathway. Additionally, OSW-1 treatment leads to the degradation of the ER chaperone GRP78/BiP implicated in the survival of cancer cells. Meanwhile, it shows a reduced sensitivity in respiration-deficient sub-clones of leukemia cells which had higher basal levels of Ca2+. Mechanistically, it was further demonstrated that cytosolic Ca2+ elevations were observed together with Na+ decreases in the cytosol, suggesting OSW-1 caused the calcium overload through inhibition of the Na+/Ca 2+exchanger (NCX). Although similar calcium disturbances were observed in pancreatic cancer cells, mechanistic studies revealed that autophagy served as an initial pro-survival mechanism subsequent to OSW-1 treatment but extended autophagy caused inevitable cell death. Furthermore, combination of OSW-1 with autophagy inhibitors significantly enhances the cytotoxicity against pancreatic cancer cells. Taken together, this study revealed the novel mechanism of OSW-1 which is through inhibition of the Na+/Ca2+ exchanger and provides a basis for using this compound in combination with other agents for the treatment of pancreatic cancer which is resistant to available anticancer drugs. ^