13 resultados para Beta-adrenergic agonist
em DigitalCommons@The Texas Medical Center
Resumo:
The $\beta$-adrenergic receptor ($\beta$AR), which couples to G$\sb{\rm s}$ and activates adenylylcyclase, has been a prototype for studying the activation and desensitization of G-protein-coupled receptors. The main objective of the present study is to elucidate the molecular mechanisms of protein kinase-mediated desensitization and internalization of the $\beta$AR.^ Activation of cAPK or PKC causes a rapid desensitization of $\beta$AR stimulation of adenylylcyclase in L cells, which previous studies suggest involves the cAPK/PKC consensus phosphorylation site in the third intracellular loop of the $\beta$AR, RRSSK$\sp{263}$. To determine the role of the individual serines in the cAPK- and PKC-meditated desensitizations, wild type (WT) and mutant $\beta$ARs containing the substitutions, Ser$\sp{261} \to$ A, Ser$\sp{262} \to$ A, Ser$\sp{262} \to$ D, and Ser$\sp{261/262} \to$ A, were constructed and stably transfected into L cells. The cAPK-mediated desensitization was decreased 70-80% by the Ser$\sp{262} \to$ A, Ser$\sp{262} \to$ D, and the Ser$\sp{261/262} \to$ A mutations, but was not altered by the Ser$\sp{261} \to$ A substitution, demonstrating that Ser$\sp{262}$ was the primary site of the cAPK-induced desensitization. The PMA/PKC-induced desensitization was unaffected by either of the single serine to alanine substitutions, but was reduced 80% by the double serine to alanine substitution, suggesting that either serine was sufficient to confer the PKC-mediated desensitization. Coincident stimulation of cAPK and PKC caused an additive desensitization which was significantly reduced (80%) only by the double substitution mutation. Quantitative evaluation of the coupling efficiencies and the GTP-shift of the WT and mutant receptors demonstrated that only one of the mutants, Ser$\sp{262} \to$ A, was partially uncoupled. The Ser$\sp{262} \to$ D mutation did not significantly uncouple, demonstrating that introducing a negative charge did not appear to mimic the desensitized state of the receptor.^ To accomplish the in vivo phosphorylation of the $\beta$AR, we used two epitope-modified $\beta$ARs, hemagglutinin-tagged $\beta$AR (HA-$\beta$AR) and 6 histidine-tagged $\beta$AR (6His-$\beta$AR), for a high efficiency purification of the $\beta$AR. Neither HA-$\beta$AR nor 6His-$\beta$AR altered activation and desensitization of the $\beta$AR significantly as compared to unmodified wild type $\beta$AR. 61% recovery of ICYP-labeled $\beta$AR was obtained with Ni-NTA column chromatography.^ The truncation 354 mutant $\beta$AR(T354), lacking putative $\beta$ARK site(s), displayed a normal epinephrine stimulation of adenylylcyclase. Although 1.0 $\mu$M epinephrine induced 60% less desensitization in T354 as compared to wild type $\beta$AR, 1.0 $\mu$M epinephrine-mediated desensitization in T354 was 35% greater than PGE$\sb1$-mediated desensitization, which is essentially identical in both WT and T354. These results suggested that sequences downstream of residue 354 may play a role in homologous desensitization and that internalization may be attributed to the additional desensitization besides the cAMP mechanism in T354 $\beta$AR. (Abstract shortened by UMI.) ^
Resumo:
An exact knowledge of the kinetic nature of the interaction between the stimulatory G protein (G$\sb{\rm s}$) and the adenylyl cyclase catalytic unit (C) is essential for interpreting the effects of Gs mutations and expression levels on cellular response to a wide variety of hormones, drugs, and neurotransmitters. In particular, insight as to the association of these proteins could lead to progress in tumor biology where single spontaneous mutations in G proteins have been associated with the formation of tumors (118). The question this work attempts to answer is whether the adenylyl cyclase activation by epinephrine stimulated $\beta\sb2$-adrenergic receptors occurs via G$\sb{\rm s}$ proteins by a G$\sb{\rm s}$ to C shuttle or G$\sb{\rm s}$-C precoupled mechanism. The two forms of activation are distinguishable by the effect of G$\sb{\rm s}$ levels on epinephrine stimulated EC50 values for cyclase activation.^ We have made stable transfectants of S49 cyc$\sp-$ cells with the gene for the $\alpha$ protein of G$\sb{\rm s}$ $(\alpha\sb{\rm s})$ which is under the control of the mouse mammary tumor virus LTR promoter (110). Expression of G$\sb{\rm s}\alpha$ was then controlled by incubation of the cells for various times with 5 $\mu$M dexamethasone. Expression of G$\sb{\rm s}\alpha$ led to the appearance of GTP shifts in the competitive binding of epinephrine with $\sp{125}$ICYP to the $\beta$-adrenergic receptors and to agonist dependent adenylyl cyclase activity. High expression of G$\sb{\rm s}\alpha$ resulted in lower EC50's for the adenylyl cyclase activity in response to epinephrine than did low expression. By kinetic modelling, this result is consistent with the existence of a shuttle mechanism for adenylyl cyclase activation by hormones.^ One item of concern that remains to be addressed is the extent to which activation of adenylyl cyclase occurs by a "pure" shuttle mechanism. Kinetic and biochemical experiments by other investigators have revealed that adenylyl cyclase activation, by hormones, may occur via a Gs-C precoupled mechanism (80, 94, 97). Activation of adenylyl cyclase, therefore, probably does not occur by either a pure "'Shuttle" or "Gs-C Precoupled" mechanism, but rather by a "Hybrid" mechanism. The extent to which either the shuttle or precoupled mechanism contributes to hormone stimulated adenylyl cyclase activity is the subject of on-going research. ^
Resumo:
The objective of this study is to test the hypothesis that partial agonists produce less desensitization because they generate less of the active conformation of the $\beta\sb2$-adrenergic receptor ($\beta$AR) (R*) and in turn cause less $\beta$AR phosphorylation by beta adrenergic receptor kinase ($\beta$ARK) and less $\beta$AR internalization. In the present work, rates of desensitization, internalization, and phosphorylation caused by a series of $\beta$AR agonists were correlated with a quantitative measure, defined as coupling efficiency, of agonist-dependent $\beta$AR activation of adenylyl cyclase. These studies were preformed in HEK-293 cells overexpressing the $\beta$AR with hemagglutinin (HA) and 6-histidine (6HIS) epitopes introduced into the N- and C-termini respectively. Agonists chosen provided a 95-fold range of coupling efficiencies, and, relative to epinephrine, the best agonist, (100%) were fenoterol (42%), albuterol (4.9%), dobutamine (2.5%) and ephedrine (1.1%). At concentrations of these agonists yielding $>$90% receptor occupancy, the rate and extent of the rapid phase (0-30 min) of agonist induced desensitization of adenylyl cyclase followed the same order as coupling efficiency, that is, epinephrine $\ge$ fitnoterol $>$ albuterol $>$ dobutamine $>$ ephedrine. The rate of internalization, measured by a loss of surface receptors during desensitization, with respect to these agonists also followed the same order as the desensitization and exhibited a slight lag. Like desensitization and internalization, $\beta$AR phosphorylation exhibited a dependency on agonist strength. The two strongest agonists epinephrine and fenoterol provoked 11 to 13 fold increases in the level of $\beta$AR phosphorylation after just 1 min, whereas the weakest agonists dobutamine and ephedrine caused only 3 to 4 fold increases in phosphorylation. With longer treatment times, the level of $\beta$AR phosphorylation declined with the strong agonists, but progressively increased with the weaker partial agonists. The major conclusion drawn from this study is that the occupancy-dependent rate of receptor phosphorylation increases with agonist coupling efficiencies and that this is sufficient to explain the desensitization, internalization, and phosphorylation data obtained.^ The mechanism of activation and desensitization by the partial $\beta$AR agonist salmeterol was also examined in this study. This drug is extremely hydrophobic and its study presents possibly unique problems. To determine whether salmeterol induces desensitization of the $\beta$AR its action has been studied using our system. Employing the use of reversible antagonists it was found that salmeterol, which has an estimated coupling efficiency near that of albuterol caused $\beta$AR desensitization. This desensitization was much reduced relative to epinephrine. Consistent with its coupling efficiency, it was found to be similar to albuterol in its ability to induce internalization and phosphorylation of the $\beta$AR. (Abstract shortened by UMI.) ^
Resumo:
$\beta$-adrenergic receptor-mediated activation of adenylate cyclase exhibits an agonist-specific separation between the dose/response curve (characterized by the EC$\sb{50}$) and the dose/binding curve (characterized by the K$\sb{\rm d}$). Cyclase activity can be near-maximal when receptor occupancy is quite low (EC$\sb{50}$ $\ll$ K$\sb{\rm d}$). This separation between the binding and response curves can be explained by the assumption that the rate of cyclase activation is proportional to the concentration of agonist-bound receptors, since the receptor is mobile and can activate more than one cyclase (the Collision Coupling Model of Tolkovsky and Levitzki). Here it is established that agonist binding frequency plays an additional role in adenylate cyclase activation in S49 murine lymphoma cells. Using epinephrine (EC$\sb{50}$ = 10 nM, K$\sb{\rm d}$ = 2 $\mu$M), the rate of cyclase activation decreased by 80% when a small (1.5%) receptor occupancy was restricted (by addition of the antagonist propranolol) to a small number (1.5%) of receptors rather than being proportionally distributed among the cell's entire population of receptors. Thus adenylate cyclase activity is not proportional to receptor occupancy in all circumstances. Collisions between receptor and cyclase pairs apparently occur a number of times in rapid sequence (an encounter); the high binding frequency of epinephrine ensures that discontiguous regions of the cell surface experience some period of agonist-bound receptor activity per small unit time minimizing "wasted" collisions between activated cyclase and bound receptor within an encounter. A contribution of agonist binding frequency to activation is thus possible when: (1) the mean lifetime of the agonist-receptor complex is shorter than the mean encounter time, and (2) the absolute efficiency (intrinsic ability to promote cyclase activation per collision) of the agonist-receptor complex is high. These conclusions are supported by experiments using agonists of different efficiencies and binding frequencies. These results are formalized in the Encounter Coupling Model of adenylate cyclase activation, which takes into explicit account the agonist binding frequency, agonist affinity for the $\beta$-adrenergic receptor, agonist efficiency, encounter frequency and the encounter time between receptor and cyclase. ^
Resumo:
Activation of protein kinase C (PKC) causes multiple effects on adenylyl cyclase (AC), (i) an inhibition of (hormone) receptor/G$\sb{\rm s}$ coupling, consistent with PKC modification of the receptor and (ii) a postreceptor sensitization consistent with a PKC-mediated modification of the stimulatory (G$\sb{\rm s}$) or inhibitory (G$\sb{\rm i}$) G-proteins or the catalyst (C) of AC. In L cells expressing the wild-type beta-adrenergic receptor ($\beta$AR) 4-$\beta$ phorbol 12-myristate-13-acetate (PMA) caused 2-3-fold increases in the K$\sb{\rm act}$ and V$\sb{\rm max}$ for epinephrine-stimulated AC activity and an attenuation of GTP-mediated inhibition of AC. Deletion of a concensus site for PKC phosphorylation (amino acids 259-262) from the $\beta$AR eliminated the PMA-induced increase in the K$\sb{\rm act}$, but had no effect on the other actions of PMA. PMA also increased the K$\sb{\rm act}$ and V$\sb{\rm max}$ for prostaglandin E$\sb1$ (PGE$\sb1$)-stimulated AC and the V$\sb{\rm max}$ for forskolin-stimulated AC. Maximal PMA-induced sensitizations were observed when AC was assayed in the presence of 10 $\mu$M GTP and 0.3 mM (Mg$\sp{++}$).^ Liao et al. (J. Biol. Chem. 265:11273-11284 (1990)) have shown that the P$\sb2$ purinergic receptor agonist ATP stimulates hydrolysis of 4,5 inositol bisphosphate (PIP$\sb2$) by phospholipase C (PLC) in L cells. To determine if agonists that stimulate PLC and PMA had similar effects on AC function we compared the effects of ATP and PMA. ATP caused a rapid 50-150% sensitization of PGE$\sb1$-, epinephrine-, and forskolin-stimulated AC activity with an EC$\sb{50}$ of 3 $\mu$M ATP. The sensitization was similar (i.e. Mg$\sp{++}$ and GTP sensitivity) to that caused by 10 nM PMA. However, unlike PMA ATP did not affect the K$\sb{\rm act}$ for hormone-stimulated AC and its effects were unaltered by down-regulation of PKCs following long term PMA treatment. Our results demonstrate that a PKC concensus site in the $\beta$AR, is required for the PMA-induced decrease in receptor/G$\sb{\rm s}$ coupling. Our data also indicate that activation of P$\sb2$ purinergic receptors by ATP may be important in the sensitization of AC in L cells. The mechanism behind this effect remains to be determined. ^
Resumo:
Human behavior appears to be regulated in part by noradrenergic transmission since antidepressant drugs modify the number and function of (beta)-adrenergic receptors in the central nervous system. Affective illness is also known to be associated with the endocrine system, particularly the hypothalamic-pituitary-adrenal axis. The aim of the present study was to determine whether hormones, in particular adrencorticotrophin (ACTH) and corticosterone, may influence behavior by regulating brain noradrenergic receptor function.^ Chronic treatment with ACTH accelerated the increase or decrease in rat brain (beta)-adrenergic receptor number induced by a lesion of the dorsal noradrenergic bundle or treatment with the antidepressant imipramine. Chronic administration of ACTH alone had no effect on (beta)-receptor number although it reduced norepinephrine stimulated cyclic AMP accumulation in brain slices. Treatment with imipramine also reduced the cyclic AMP response to norepinephrine but was accompanied by a decrease in (beta)-adrenergic receptor number. Both the imipramine and ACTH treatments reduced the affinity of (beta)-adrenergic receptors for norepinephrine, but only the antidepressant modified the potency of the neurotransmitter to stimulate second messenger production. Neither ACTH nor imipramine treatment altered Gpp(NH)p- or fluoride-stimulated adenylate cyclase, cyclic AMP, cyclic GMP, or cyclic GMP-stimulated cyclic AMP phosphodiesterase, or the activity of the guanine nucleotide binding protein (Gs). These findings suggested that post-receptor components of the cyclic nucleotide generating system are not influenced by the hormone or antidepressant. This conclusion was verified by the finding that neither treatment altered adenosine-stimulated cyclic AMP accumulation in brain tissue.^ A detailed examination of the (alpha)- and (beta)-adrenergic receptor components of norepinephrine-stimulated cyclic AMP production revealed that ACTH, but not imipramine, administration reduced the contribution of the (alpha)-receptor mediated response. Like ACTH treatment, corticosterone diminished the (alpha)-adrenergic component indicating that adrenal steroids probably mediate the neurochemical responses to ACTH administration. The data indicate that adrenal steroids and antidepressants decrease noradrenergic receptor function by selectively modifying the (alpha)- and (beta)-receptor components. The functional similarity in the action of the steroid and antidepressants suggests that adrenal hormones normally contribute to the maintenance of receptor systems which regulate affective behavior in man. ^
Resumo:
Glaucoma is a collection of diseases characterized by multifactorial progressive changes leading to visual field loss and optic neuropathy most frequently due to elevated intraocular pressure (IOP). The goal of treatment is the lowering of the IOP to prevent additional optic nerve damage. Treatment usually begins with topical pharmacological agents as monotherapy, progresses to combination therapy with agents from up to 4 different classes of IOP-lowering medications, and then proceeds to laser or incisional surgical modalities for refractory cases. The fixed combination therapy with the carbonic anhydrase inhibitor dorzolamide hydrochloride 2% and the beta blocker timolol maleate 0.5% is now available in a generic formulation for the treatment of patients who have not responded sufficiently to monotherapy with beta adrenergic blockers. In pre- and postmarketing clinical studies, the fixed combination dorzolamide-timolol has been shown to be safe and efficacious, and well tolerated by patients. The fixed combination dorzolamide-timolol is convenient for patients, reduces their dosing regimen with the goal of increasing their compliance, reduces the effects of "washout" when instilling multiple drops, and reduces the preservative burden by reducing the number of drops administered per day.
Resumo:
The dorsal noradrenergic bundle (DB) is a major ascending pathway which originates in the locus coeruleus of the brainstem and projects to the forebrain. The behavioral role of the DB remains unclear, despite a great deal of effort. Selective attention and anxiety are two areas which have been the focus of recent research. Some studies of the DB utilize the neurotoxin 6-hydroxydopamine (6-OHDA), since 6-OHDA injection into this pathway results in greater than 90 percent depletion of cortical and hippocampal norepinephrine (NE). Neophobia, the fear of novelty, has been reported to be either increased or decreased by 6-OHDA lesions of the DB, depending on conditions. The selective attention hypothesis would be supported by increased neophobia after 6-OHDA lesions, while the anxiety hypothesis would be supported by decreased neophobia. We have examined the effects of 6-OHDA DB lesions on neophobia under conditions in which the test environment and/or the test food were novel. We found that the lesion attenuates neophobia, defined as an increased preference for novel food, when both the environment and food were novel. The lesion had no effect on neophobia when only the environment or food was novel.^ We examined the effects of chronic intraventricular NE infusions on behavior in our neophobia test, in sham and 6-OHDA DB lesioned animals. We found that chronic NE infusions into lesioned animals significantly reversed the lesion-induced attenuation of neophobia. Sham/NE infused animals demonstrated a 40 percent greater preference for familiar food compared to sham/saline infused animals. These data suggest that infusions of NE have an effect opposite to lesion-induced attenuation of neophobia. Chronic infusions of the alpha adrenoceptor agonists had no consistent effects on neophobia. The beta adrenoceptor agonist, isoproterenol reversed the lesion-induced attenuation of neophobia but not to a statistically significant degree. Isoproterenol increased neophobia in sham animals. Forskolin, an adenylate cyclase activator, mimicked the effects of NE infusion by significantly reversing the lesion-induced attenuation of neophobia, while increasing neophobia in sham animals. These results suggest that increased release of NE during stress increases neophobia in part by stimulating beta adrenoceptors which activate adenylate cyclase. ^
Resumo:
Previous experiments had shown no differences in desensitization in cells with mutations of the adenylyl cyclase or the cAMP-dependent protein kinase and had ruled out this kinase as a mediator of desensitization; however, the assays of adenylyl cyclase had been made at high concentrations of free magnesium. The work presented in this dissertation documents a role for cAMP-dependent protein kinase which became apparent with assays at low concentrations of free magnesium. (1) The adenylyl cyclase in membranes from wild type S49 lymphoma cells showed substantial desensitization after incubation of the intact cells with low concentrations of epinephrine (5-20 nM). This desensitization was heterologous, that is it reduced the subsequent responses of the adenylyl cyclase to both epinephrine and prostaglandin-E$\sb1$. (2) The adenylyl cyclase in membranes of S49 cyc$\sp-$ cells, which do not make cAMP in response to hormones, and S49 kin$\sp-$ cells, which lack cAMP-dependent protein kinase activity, showed no heterologous desensitization following incubation of the intact cells with low concentrations of hormones. (3) Heterologous desensitization of the adenylyl cyclase was induced by incubations of wild type cells with forskolin, which activates the adenylyl cyclase downstream of the hormone receptors, or dibutyryl-cAMP, which activates the cAMP-dependent protein kinase directly. (4) Site-directed mutagenesis was used to delete the cAMP-dependent protein kinase consensus phosphorylation sequences on the $\beta$-adrenergic receptor. Heterologous desensitization occurred in intact L-cells expressing the wild type receptor or the receptor lacking the C-terminal phosphorylation site; however, only homologous desensitization occurred when the phosphorylation site on the third intracellular loop of the receptor was deleted. (5) To test directly the effects of cAMP-dependent protein kinase on the adenylyl cyclase the catalytic subunit of the kinase was purified from bovine heart and incubated with adenylyl cyclase in plasma membrane preparations. In this cell-free system the kinase caused rapid heterlogous reductions of the responsiveness of the S49 wild type adenylyl cyclase. Additionally, the adenylyl cyclase in kin$\sp-$ membranes, which showed only homologous desensitization in the intact cell, was desensitization by cell-free incubation with the kinase.^ The epinephrine responsiveness was not affected in L-cell membranes expressing the $\beta$-adrenergic receptor lacking the cAMP-dependent protein kinase consensus sequence on the third intracellular loop. ^
Resumo:
There have been multiple reports which indicate that variations in $\beta$AR expression affect the V$\sb{\rm max}$ observed for the agonist-dependent activation of adenylylcyclase. This observation has been ignored by most researchers when V$\sb{\rm max}$ values obtained for wild type and mutant receptors are compared. Such an imprecise analysis may lead to erroneous conclusions concerning the ability of a receptor to activate adenylylcyclase. Equations were derived from the Cassel-Selinger model of GTPase activity and Tolkovsky and Levitzki's Collision Coupling model which predict that the EC$\sb{50}$ and V$\sb{\rm max}$ for the activation of adenylylcyclase are a function of receptor number. Experimental results for L cell clones in which either hamster or human $\beta$AR were transfected at varying levels showed that EC$\sb{50}$ decreases and V$\sb{\rm max}$ increases as receptor number increases. Comparison of these results with simulations obtained from the equations describing EC$\sb{50}$ and V$\sb{\rm max}$ showed a close correlation. This documents that the kinetic parameters of adenylylcyclase activation change with the level of receptor expression and relates this phenomenon to a theoretical framework concerning the mechanisms involved in $\beta$AR signal transduction.^ One of the terms used in the equations which expressed the EC$\sb{50}$ and V$\sb{\rm max}$ as a function of receptor number is coupling efficiency, defined as $\rm k\sb1/k\sb{-1}$. Calculation of $\rm k\sb1/k\sb{-1}$ can be accomplished for wild type receptors with the easily measured experimental values of agonist K$\sb{\rm d}$, EC$\sb{50}$ and receptor number. This was demonstrated for hamster $\beta$AR which yielded a coupling efficiency of 0.15 $\pm$ 0.003 and human $\beta$AR which yielded a coupling efficiency of 0.90 $\pm$ 0.031. $\rm k\sb1/k\sb{-1}$ replaces the traditional qualitative evaluation of the ability to activate adenylylcyclase, which utilizes V$\sb{\rm max}$ without correction for variation in receptor number, with a quantitative definition that more accurately describes the ability of $\beta$AR to couple to G$\sb{\rm s}$.^ The equations which express the EC$\sb{50}$ and V$\sb{\rm max}$ for adenylylcyclase activation as a function of receptor number and coupling efficiency were tested to determine whether they could accurately simulate the changes seen in these parameters during desensitization. Data from original desensitization experiments and data from the literature (24,25,52,54,83) were compared to simulated changes in EC$\sb{50}$ and V$\sb{\rm max}$. In a variety of systems the predictions of the equations were consistent with the changes observed in EC$\sb{50}$ and V$\sb{\rm max}$. In addition reductions in the calculated value of $\rm k\sb1/k\sb{-1}$ was shown to correlate well with $\beta$AR phosphorylation and to be minimally affected by sequestration and down-regulation. ^
Resumo:
The Two State model describes how drugs activate receptors by inducing or supporting a conformational change in the receptor from “off” to “on”. The beta 2 adrenergic receptor system is the model system which was used to formalize the concept of two states, and the mechanism of hormone agonist stimulation of this receptor is similar to ligand activation of other seven transmembrane receptors. Hormone binding to beta 2 adrenergic receptors stimulates the intracellular production of cyclic adenosine monophosphate (cAMP), which is mediated through the stimulatory guanyl nucleotide binding protein (Gs) interacting with the membrane bound enzyme adenylylcyclase (AC). ^ The effects of cAMP include protein phosphorylation, metabolic regulation and transcriptional regulation. The beta 2 adrenergic receptor system is the most well known of its family of G protein coupled receptors. Ligands have been scrutinized extensively in search of more effective therapeutic agents at this receptor as well as for insight into the biochemical mechanism of receptor activation. Hormone binding to receptor is thought to induce a conformational change in the receptor that increases its affinity for inactive Gs, catalyzes the release of GDP and subsequent binding of GTP and activation of Gs. ^ However, some beta 2 ligands are more efficient at this transformation than others, and the underlying mechanism for this drug specificity is not fully understood. The central problem in pharmacology is the characterization of drugs in their effect on physiological systems, and consequently, the search for a rational scale of drug effectiveness has been the effort of many investigators, which continues to the present time as models are proposed, tested and modified. ^ The major results of this thesis show that for many b2 -adrenergic ligands, the Two State model is quite adequate to explain their activity, but dobutamine (+/−3,4-dihydroxy-N-[3-(4-hydroxyphenyl)-1-methylpropyl]- b -phenethylamine) fails to conform to the predictions of the Two State model. It is a weak partial agonist, but it forms a large amount of high affinity complexes, and these complexes are formed at low concentrations much better than at higher concentrations. Finally, dobutamine causes the beta 2 adrenergic receptor to form high affinity complexes at a much faster rate than can be accounted for by its low efficiency activating AC. Because the Two State model fails to predict the activity of dobutamine in three different ways, it has been disproven in its strictest form. ^
Resumo:
Using a "collision-coupling" model for $\beta \sb 2$-adrenergic receptor-mediated activation of adenylylcyclase in S49 lymphoma cells, the rate-limiting step of that activation was identified as the association of an "active-state", hormone-bound receptor (HR$\sp\*$) with a G$\sb{\rm s}$-adenylylcyclase moiety (G$\sb{\rm s}$C). It was subsequently hypothesized that the location of the rate-limiting step would not be shifted elsewhere in the activation scheme by receptor desensitization. The traditional focus of receptor desensitization studies has been on modifications of the receptor molecule itself. A "clear-cut" answer to the present hypothesis provides new information on modifications in the function of the receptor following desensitization.^ "Heterologous" desensitization was induced in wild type S49 cells with agents which increase intracellular cAMP without occupying $\beta\sb2$-adrenergic receptors; PGE$\sb1$, forskolin and dibutyryl cAMP. These treatments avoided overlapping effects on $\beta\sb2$-adrenergic receptors by the "homologous" mechanism, in which occupancy by hormone is causative. Although the steady-state activation rate was decreased following heterologous desensitization, that rate was still limited by the association between HR* and G$\sb{\rm s}$C. Thus "heterologous" desensitization acts at the equilibrium between HR and HR* (which is driven by hormone efficiency) such that HR* formation becomes less likely and the frequency of HR*G$\sb{\rm s}$C associations decreases.^ "Homologous" desensitization was induced by high (1-10$\mu$M) epinephrine concentrations in the S49 variant deficient in cAMP-dependent protein kinase, KIN$\sp-$. Use of KIN$\sp-$minimized overlapping effects by the "heterologous" mechanism, which is PKA-dependent. Following homologous desensitization, roughly 50% of the receptors in plasma membrane preparations no longer formed HR*G$\sb{\rm s}$C complexes; evidenced by a decrease in high-affinity hormone binding sites. The loss of HR*G$\sb{\rm s}$C formation did not appear related to the HR/HR* equilibrium. Increasing the efficiency of the assay agonist did nothing to "override" the effect. HR*G$\sb{\rm s}$C association was still the rate-limiting step among the remaining functional receptors. It was not distinguishable whether the remaining activity was "desensitized" due to adenylylcyclase having decreased access to receptors within plasma membrane fragments or due to an effect similar to "heterologous" desensitization. ^
Resumo:
Levodopa, the precursor of dopamine, is currently the drug of choice in the treatment of Parkinson's disease. Recently, two direct dopamine agonists, bromocriptine and pergolide, have been tested for the treatment of Parkinson's disease because of reduced side effects compared to levodopa. Few studies have evaluated the effects of long-term treatment of dopamine agonists on dopamine receptor regulation in the central nervous system. Thus, the purpose of this study was to determine whether chronic dopamine agonist treatment produces a down-regulation of striatal dopamine receptor function and to compare the results of the two classes of dopaminergic drugs.^ Levodopa with carbidopa, a peripheral decarboxylase inhibitor, was administered orally to rats whereas bromocriptine and pergolide were injected intraperitoneally once daily. Several neurochemical parameters were examined from 1 to 28 days.^ Levodopa minimally decreased striatal D-1 receptor activity but increased the number of striatal D-2 binding sites. Levodopa increased the V(,max) of tyrosine hydroxylase (TH) in all brain regions tested. Protein blot analysis of striatal TH indicated a significant increase in the amount of TH present. Dopamine-beta-hydroxylase (DBH) activity was markedly decreased in all brain regions studied and mixing experiments of control and drug-treated cortices did not show the presence of an increased level of endogenous inhibitors.^ Bromocriptine treatment decreased the number of D-2 binding sites. Striatal TH activity was decreased and protein blot analysis indicated no change in TH quantity. The specificity of bromocriptine for striatal TH suggested that bromocriptine preferentially interacts with dopamine autoreceptors.^ Combination levodopa-bromocriptine was administered for 12 days. There was a decrease in both D-1 receptor activity and D-2 binding sites, and a decrease in brain HVA levels suggesting a postsynaptic receptor action. Pergolide produced identical results to the combination levodopa-bromocriptine studies.^ In conclusion, combination levodopa-bromocriptine and pergolide treatments exhibited the expected down-regulation of dopamine receptor activity. In contrast, levodopa appeared to up-regulate dopamine receptor activity. Thus, these data may help to explain, on a biochemical basis, the decrease in the levodopa-induced side effects noted with combination levodopa-bromocriptine or pergolide therapies in the treatment of Parkinson's disease. ^