25 resultados para Beta(2)-adrenergic Receptors

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An exact knowledge of the kinetic nature of the interaction between the stimulatory G protein (G$\sb{\rm s}$) and the adenylyl cyclase catalytic unit (C) is essential for interpreting the effects of Gs mutations and expression levels on cellular response to a wide variety of hormones, drugs, and neurotransmitters. In particular, insight as to the association of these proteins could lead to progress in tumor biology where single spontaneous mutations in G proteins have been associated with the formation of tumors (118). The question this work attempts to answer is whether the adenylyl cyclase activation by epinephrine stimulated $\beta\sb2$-adrenergic receptors occurs via G$\sb{\rm s}$ proteins by a G$\sb{\rm s}$ to C shuttle or G$\sb{\rm s}$-C precoupled mechanism. The two forms of activation are distinguishable by the effect of G$\sb{\rm s}$ levels on epinephrine stimulated EC50 values for cyclase activation.^ We have made stable transfectants of S49 cyc$\sp-$ cells with the gene for the $\alpha$ protein of G$\sb{\rm s}$ $(\alpha\sb{\rm s})$ which is under the control of the mouse mammary tumor virus LTR promoter (110). Expression of G$\sb{\rm s}\alpha$ was then controlled by incubation of the cells for various times with 5 $\mu$M dexamethasone. Expression of G$\sb{\rm s}\alpha$ led to the appearance of GTP shifts in the competitive binding of epinephrine with $\sp{125}$ICYP to the $\beta$-adrenergic receptors and to agonist dependent adenylyl cyclase activity. High expression of G$\sb{\rm s}\alpha$ resulted in lower EC50's for the adenylyl cyclase activity in response to epinephrine than did low expression. By kinetic modelling, this result is consistent with the existence of a shuttle mechanism for adenylyl cyclase activation by hormones.^ One item of concern that remains to be addressed is the extent to which activation of adenylyl cyclase occurs by a "pure" shuttle mechanism. Kinetic and biochemical experiments by other investigators have revealed that adenylyl cyclase activation, by hormones, may occur via a Gs-C precoupled mechanism (80, 94, 97). Activation of adenylyl cyclase, therefore, probably does not occur by either a pure "'Shuttle" or "Gs-C Precoupled" mechanism, but rather by a "Hybrid" mechanism. The extent to which either the shuttle or precoupled mechanism contributes to hormone stimulated adenylyl cyclase activity is the subject of on-going research. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Two State model describes how drugs activate receptors by inducing or supporting a conformational change in the receptor from “off” to “on”. The beta 2 adrenergic receptor system is the model system which was used to formalize the concept of two states, and the mechanism of hormone agonist stimulation of this receptor is similar to ligand activation of other seven transmembrane receptors. Hormone binding to beta 2 adrenergic receptors stimulates the intracellular production of cyclic adenosine monophosphate (cAMP), which is mediated through the stimulatory guanyl nucleotide binding protein (Gs) interacting with the membrane bound enzyme adenylylcyclase (AC). ^ The effects of cAMP include protein phosphorylation, metabolic regulation and transcriptional regulation. The beta 2 adrenergic receptor system is the most well known of its family of G protein coupled receptors. Ligands have been scrutinized extensively in search of more effective therapeutic agents at this receptor as well as for insight into the biochemical mechanism of receptor activation. Hormone binding to receptor is thought to induce a conformational change in the receptor that increases its affinity for inactive Gs, catalyzes the release of GDP and subsequent binding of GTP and activation of Gs. ^ However, some beta 2 ligands are more efficient at this transformation than others, and the underlying mechanism for this drug specificity is not fully understood. The central problem in pharmacology is the characterization of drugs in their effect on physiological systems, and consequently, the search for a rational scale of drug effectiveness has been the effort of many investigators, which continues to the present time as models are proposed, tested and modified. ^ The major results of this thesis show that for many b2 -adrenergic ligands, the Two State model is quite adequate to explain their activity, but dobutamine (+/−3,4-dihydroxy-N-[3-(4-hydroxyphenyl)-1-methylpropyl]- b -phenethylamine) fails to conform to the predictions of the Two State model. It is a weak partial agonist, but it forms a large amount of high affinity complexes, and these complexes are formed at low concentrations much better than at higher concentrations. Finally, dobutamine causes the beta 2 adrenergic receptor to form high affinity complexes at a much faster rate than can be accounted for by its low efficiency activating AC. Because the Two State model fails to predict the activity of dobutamine in three different ways, it has been disproven in its strictest form. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study is to test the hypothesis that partial agonists produce less desensitization because they generate less of the active conformation of the $\beta\sb2$-adrenergic receptor ($\beta$AR) (R*) and in turn cause less $\beta$AR phosphorylation by beta adrenergic receptor kinase ($\beta$ARK) and less $\beta$AR internalization. In the present work, rates of desensitization, internalization, and phosphorylation caused by a series of $\beta$AR agonists were correlated with a quantitative measure, defined as coupling efficiency, of agonist-dependent $\beta$AR activation of adenylyl cyclase. These studies were preformed in HEK-293 cells overexpressing the $\beta$AR with hemagglutinin (HA) and 6-histidine (6HIS) epitopes introduced into the N- and C-termini respectively. Agonists chosen provided a 95-fold range of coupling efficiencies, and, relative to epinephrine, the best agonist, (100%) were fenoterol (42%), albuterol (4.9%), dobutamine (2.5%) and ephedrine (1.1%). At concentrations of these agonists yielding $>$90% receptor occupancy, the rate and extent of the rapid phase (0-30 min) of agonist induced desensitization of adenylyl cyclase followed the same order as coupling efficiency, that is, epinephrine $\ge$ fitnoterol $>$ albuterol $>$ dobutamine $>$ ephedrine. The rate of internalization, measured by a loss of surface receptors during desensitization, with respect to these agonists also followed the same order as the desensitization and exhibited a slight lag. Like desensitization and internalization, $\beta$AR phosphorylation exhibited a dependency on agonist strength. The two strongest agonists epinephrine and fenoterol provoked 11 to 13 fold increases in the level of $\beta$AR phosphorylation after just 1 min, whereas the weakest agonists dobutamine and ephedrine caused only 3 to 4 fold increases in phosphorylation. With longer treatment times, the level of $\beta$AR phosphorylation declined with the strong agonists, but progressively increased with the weaker partial agonists. The major conclusion drawn from this study is that the occupancy-dependent rate of receptor phosphorylation increases with agonist coupling efficiencies and that this is sufficient to explain the desensitization, internalization, and phosphorylation data obtained.^ The mechanism of activation and desensitization by the partial $\beta$AR agonist salmeterol was also examined in this study. This drug is extremely hydrophobic and its study presents possibly unique problems. To determine whether salmeterol induces desensitization of the $\beta$AR its action has been studied using our system. Employing the use of reversible antagonists it was found that salmeterol, which has an estimated coupling efficiency near that of albuterol caused $\beta$AR desensitization. This desensitization was much reduced relative to epinephrine. Consistent with its coupling efficiency, it was found to be similar to albuterol in its ability to induce internalization and phosphorylation of the $\beta$AR. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There have been multiple reports which indicate that variations in $\beta$AR expression affect the V$\sb{\rm max}$ observed for the agonist-dependent activation of adenylylcyclase. This observation has been ignored by most researchers when V$\sb{\rm max}$ values obtained for wild type and mutant receptors are compared. Such an imprecise analysis may lead to erroneous conclusions concerning the ability of a receptor to activate adenylylcyclase. Equations were derived from the Cassel-Selinger model of GTPase activity and Tolkovsky and Levitzki's Collision Coupling model which predict that the EC$\sb{50}$ and V$\sb{\rm max}$ for the activation of adenylylcyclase are a function of receptor number. Experimental results for L cell clones in which either hamster or human $\beta$AR were transfected at varying levels showed that EC$\sb{50}$ decreases and V$\sb{\rm max}$ increases as receptor number increases. Comparison of these results with simulations obtained from the equations describing EC$\sb{50}$ and V$\sb{\rm max}$ showed a close correlation. This documents that the kinetic parameters of adenylylcyclase activation change with the level of receptor expression and relates this phenomenon to a theoretical framework concerning the mechanisms involved in $\beta$AR signal transduction.^ One of the terms used in the equations which expressed the EC$\sb{50}$ and V$\sb{\rm max}$ as a function of receptor number is coupling efficiency, defined as $\rm k\sb1/k\sb{-1}$. Calculation of $\rm k\sb1/k\sb{-1}$ can be accomplished for wild type receptors with the easily measured experimental values of agonist K$\sb{\rm d}$, EC$\sb{50}$ and receptor number. This was demonstrated for hamster $\beta$AR which yielded a coupling efficiency of 0.15 $\pm$ 0.003 and human $\beta$AR which yielded a coupling efficiency of 0.90 $\pm$ 0.031. $\rm k\sb1/k\sb{-1}$ replaces the traditional qualitative evaluation of the ability to activate adenylylcyclase, which utilizes V$\sb{\rm max}$ without correction for variation in receptor number, with a quantitative definition that more accurately describes the ability of $\beta$AR to couple to G$\sb{\rm s}$.^ The equations which express the EC$\sb{50}$ and V$\sb{\rm max}$ for adenylylcyclase activation as a function of receptor number and coupling efficiency were tested to determine whether they could accurately simulate the changes seen in these parameters during desensitization. Data from original desensitization experiments and data from the literature (24,25,52,54,83) were compared to simulated changes in EC$\sb{50}$ and V$\sb{\rm max}$. In a variety of systems the predictions of the equations were consistent with the changes observed in EC$\sb{50}$ and V$\sb{\rm max}$. In addition reductions in the calculated value of $\rm k\sb1/k\sb{-1}$ was shown to correlate well with $\beta$AR phosphorylation and to be minimally affected by sequestration and down-regulation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a "collision-coupling" model for $\beta \sb 2$-adrenergic receptor-mediated activation of adenylylcyclase in S49 lymphoma cells, the rate-limiting step of that activation was identified as the association of an "active-state", hormone-bound receptor (HR$\sp\*$) with a G$\sb{\rm s}$-adenylylcyclase moiety (G$\sb{\rm s}$C). It was subsequently hypothesized that the location of the rate-limiting step would not be shifted elsewhere in the activation scheme by receptor desensitization. The traditional focus of receptor desensitization studies has been on modifications of the receptor molecule itself. A "clear-cut" answer to the present hypothesis provides new information on modifications in the function of the receptor following desensitization.^ "Heterologous" desensitization was induced in wild type S49 cells with agents which increase intracellular cAMP without occupying $\beta\sb2$-adrenergic receptors; PGE$\sb1$, forskolin and dibutyryl cAMP. These treatments avoided overlapping effects on $\beta\sb2$-adrenergic receptors by the "homologous" mechanism, in which occupancy by hormone is causative. Although the steady-state activation rate was decreased following heterologous desensitization, that rate was still limited by the association between HR* and G$\sb{\rm s}$C. Thus "heterologous" desensitization acts at the equilibrium between HR and HR* (which is driven by hormone efficiency) such that HR* formation becomes less likely and the frequency of HR*G$\sb{\rm s}$C associations decreases.^ "Homologous" desensitization was induced by high (1-10$\mu$M) epinephrine concentrations in the S49 variant deficient in cAMP-dependent protein kinase, KIN$\sp-$. Use of KIN$\sp-$minimized overlapping effects by the "heterologous" mechanism, which is PKA-dependent. Following homologous desensitization, roughly 50% of the receptors in plasma membrane preparations no longer formed HR*G$\sb{\rm s}$C complexes; evidenced by a decrease in high-affinity hormone binding sites. The loss of HR*G$\sb{\rm s}$C formation did not appear related to the HR/HR* equilibrium. Increasing the efficiency of the assay agonist did nothing to "override" the effect. HR*G$\sb{\rm s}$C association was still the rate-limiting step among the remaining functional receptors. It was not distinguishable whether the remaining activity was "desensitized" due to adenylylcyclase having decreased access to receptors within plasma membrane fragments or due to an effect similar to "heterologous" desensitization. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing number of studies show strong associations between stress and altered immune function. In vivo studies of chronic and acute stress have demonstrated that cognitive stressors are strongly correlated with high circulating levels of catecholamines (CT) and corticosteroids (CS) that are associated with changes in type-1/type-2 cytokine expression. Although individual pharmacologic doses of CS and CT can inhibit the expression of T-helper 1 (Th1, type-1 like) and promote the production of T-helper 2 (Th2, type-2 like) cytokines in antigen-specific and mitogen stimulated human leukocyte cultures in vitro, little attention has been focused on the effects of combination physiologic-stress doses of CT and CS that may be more physiologically relevant. In addition, both in-vivo and in-vitro studies suggest that the differential expression of the B7 family of costimulatory molecules CD80 and CD86 may promote the expression of type-1 or type-2 cytokines, respectively. Furthermore, corticosteroids can influence the expression of β2-adrenergic receptors in various human tissues. We therefore investigated the combined effects of physiologic-stress doses of in vitro CT and CS upon the type-1/type-2 cytokine balance and expression of B7 costimulatory molecules of human peripheral blood mononuclear cells (PBMC) as a model to study the immunomodulatory effects of physiologic stress. Results demonstrated a significant decrease in type-1 cytokine expression and a significant increase in type-2 cytokine production in our CS+CT incubated cultures when compared to either CT or CS agents alone. In addition, we demonstrated the differential expression of CD80/CD86 in favor of CD86 at the cellular and population level as determined by flow cytometry in lipopolysaccharide stimulated human Monocytes. Furthermore, we developed flow cytometry based assays to detect total β2AR in human CD4+ T-lymphocytes that demonstrated decreased expression of β2AR in mitogen stimulated CD4+ T-lymphocytes in the presence of physiologic stress levels of CS and CT as single in vitro agents, however, when both CS and CT were combined, significantly higher expression of β2AR was observed. In summary, our in vitro data suggest that both CS and CT work cooperatively to shift immunity towards type-2 responses. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human behavior appears to be regulated in part by noradrenergic transmission since antidepressant drugs modify the number and function of (beta)-adrenergic receptors in the central nervous system. Affective illness is also known to be associated with the endocrine system, particularly the hypothalamic-pituitary-adrenal axis. The aim of the present study was to determine whether hormones, in particular adrencorticotrophin (ACTH) and corticosterone, may influence behavior by regulating brain noradrenergic receptor function.^ Chronic treatment with ACTH accelerated the increase or decrease in rat brain (beta)-adrenergic receptor number induced by a lesion of the dorsal noradrenergic bundle or treatment with the antidepressant imipramine. Chronic administration of ACTH alone had no effect on (beta)-receptor number although it reduced norepinephrine stimulated cyclic AMP accumulation in brain slices. Treatment with imipramine also reduced the cyclic AMP response to norepinephrine but was accompanied by a decrease in (beta)-adrenergic receptor number. Both the imipramine and ACTH treatments reduced the affinity of (beta)-adrenergic receptors for norepinephrine, but only the antidepressant modified the potency of the neurotransmitter to stimulate second messenger production. Neither ACTH nor imipramine treatment altered Gpp(NH)p- or fluoride-stimulated adenylate cyclase, cyclic AMP, cyclic GMP, or cyclic GMP-stimulated cyclic AMP phosphodiesterase, or the activity of the guanine nucleotide binding protein (Gs). These findings suggested that post-receptor components of the cyclic nucleotide generating system are not influenced by the hormone or antidepressant. This conclusion was verified by the finding that neither treatment altered adenosine-stimulated cyclic AMP accumulation in brain tissue.^ A detailed examination of the (alpha)- and (beta)-adrenergic receptor components of norepinephrine-stimulated cyclic AMP production revealed that ACTH, but not imipramine, administration reduced the contribution of the (alpha)-receptor mediated response. Like ACTH treatment, corticosterone diminished the (alpha)-adrenergic component indicating that adrenal steroids probably mediate the neurochemical responses to ACTH administration. The data indicate that adrenal steroids and antidepressants decrease noradrenergic receptor function by selectively modifying the (alpha)- and (beta)-receptor components. The functional similarity in the action of the steroid and antidepressants suggests that adrenal hormones normally contribute to the maintenance of receptor systems which regulate affective behavior in man. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Familial aggregation of intracranial aneurysms (IA) strongly suggests a genetic contribution to pathogenesis. However, genetic risk factors have yet to be defined. For families affected by aortic aneurysms, specific gene variants have been identified, many affecting the receptors to transforming growth factor-beta (TGF-beta). In recent work, we found that aortic and intracranial aneurysms may share a common genetic basis in some families. We hypothesized, therefore, that mutations in TGF-beta receptors might also play a role in IA pathogenesis. METHODS: To identify genetic variants in TGF-beta and its receptors, TGFB1, TGFBR1, TGFBR2, ACVR1, TGFBR3, and ENG were directly sequenced in 44 unrelated patients with familial IA. Novel variants were confirmed by restriction digestion analyses, and allele frequencies were analyzed in cases versus individuals without known intracranial disease. Similarly, allele frequencies of a subset of known SNPs in each gene were also analyzed for association with IA. RESULTS: No mutations were found in TGFB1, TGFBR1, TGFBR2, or ACVR1. Novel variants identified in ENG (p.A60E) and TGFBR3 (p.W112R) were not detected in at least 892 reference chromosomes. ENG p.A60E showed significant association with familial IA in case-control studies (P=0.0080). No association with IA could be found for any of the known polymorphisms tested. CONCLUSIONS: Mutations in TGF-beta receptor genes are not a major cause of IA. However, we identified rare variants in ENG and TGFBR3 that may be important for IA pathogenesis in a subset of families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity and related chronic diseases represent a tremendous public health burden among Mexican Americans, a young and rapidly-expanding population. This study investigated the impact of variation within eight candidate obesity genes, which include leptin (LEP), leptin receptor (LEPR), neuropeptide Y (NPY), NPYY1 receptor (NPYY1), glucagon-like peptide-1 (GLP-1), GLP-1 receptor (GLP1R), beta-3 adrenergic receptor (β3AR), and uncoupling protein (UCP1), on variation in human obesity status and/or quantitative traits related to obesity in Mexican Americans from Starr County, Texas. The Trp64Arg polymorphism within β3AR was typed in 820 random individuals and 240 pedigrees (N = 2,044). The Arg allele frequency was significantly greater in obese versus non-obese individuals (0.20 versus 0. 15, respectively). In addition, within the random sample, the Arg allele was associated with significantly greater body weight (p = 0.031) and body mass index (BMI, p = 0.008) than the Trp allele. In the family sample, the Trp64Arg locus was also linked to percent fat (p = 0.045) but not to body weight or BMI. No linkage between obesity, diabetes, hypertension, or gallbladder disease and the Trp64Arg mutation was observed in families using affected sib pair linkage analysis or the transmission disequilibrium test. Microsatellite markers proximate to the remaining seven genes were typed in 302 individuals from 59 families. Sib pair linkage analysis provided evidence for linkage between obesity and NPY within affected sibling pairs (p = 0.042; n = 170 pairs). NPY was also linked to weight (p = 0.020), abdominal circumference (p = 0.031), hip circumference (p = 0.012), DBP (p ≤ 0.005), and a composite measure of body mass/fat (p ≤ 0.048) in all sibling pairs (n = 545 pairs). Additionally, LEP was linked to waist/hip ratio (p ≤ 0.009), total cholesterol (p ≤ 0.030), and HDL cholesterol (p ≤ 0.026), and LEPR was linked to fasting blood glucose (p ≤ 0.018) and DBP (p ≤ 0.003). Subsequent to the linkage analyses, the NPY gene was sequenced and eight variant sites identified. Two variant sites (-880I/D and 69I/D) were typed in a random sample of 914 individuals. The 880I/D variant was significantly associated with waist/hip ratio (p = 0.035) in the entire sample (N = 914) and with BMI (p = 0. 031), abdominal circumference (p = 0.044), and waist/hip ratio (p = 0.041) in a non-obese subsample (BW < 30 kg/m2, n = 594). The 69I/D variant was a rare mutation observed in only one pedigree and was not associated with obesity or body size/mass within this pedigree. Results of this study indicate that variation at or near β3AR, LEP, LEPR, and NPY may exert effects which increase obesity susceptibility and influence obesity-related measures in this population. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most critical aspects of G Protein Coupled Receptors (GPCRs) regulation is their rapid and acute desensitization following agonist stimulation. Phosphorylation of these receptors by GPCR kinases (GRK) is a major mechanism of desensitization. Considerable evidence from studies of rhodopsin kinase and GRK2 suggests there is an allosteric docking site for the receptor distinct from the GRK catalytic site. While the agonist-activated GPCR appears crucial for GRK activation, the molecular details of this interaction remain unclear. Recent studies suggested an important role for the N- and C-termini and domains in the small lobe of the kinase domain in allosteric activation; however, neither the mechanism of action of that site nor the RH domain contributions have been elucidated. To search for the allosteric site, we first indentified evolutionarily conserved sites within the RH and kinase domains presumably deterministic of protein function employing evolutionary trace (ET) methodology and crystal structures of GRK6. Focusing on a conserved cluster centered on helices 3, 9, and 10 in the RH domain, key residues of GRK5 and 6 were targeted for mutagenesis and functional assays. We found that a number of double mutations within helices 3, 9, and 10 and the N-terminus markedly reduced (50–90%) the constitutive phosphorylation of the β-2 Adrenergic Receptor (β2AR) in intact cells and phosphorylation of light-activated rhodopsin (Rho*) in vitro as compared to wild type (WT) GRK5 or 6. Based on these results, we designed peptide mimetics of GRK5 helix 9 both computationally and through chemical modifications with the goal of both confirming the importance of helix 9 and developing a useful inhibitor to disrupt the GPCR-GRK interaction. Several peptides were found to block Rho* phosphorylation by GRK5 including the native helix 9 sequence, Peptide Builder designed-peptide preserving only the key ET residues, and chemically locked helices. Most peptidomimetics showed inhibition of GRK5 activity greater than 80 % with an IC50 of ∼ 30 µM. Alanine scanning of helix 9 has further revealed both essential and non-essential residues for inhibition. Importantly, substitution of Arg 169 by an alanine in the native helix 9-based peptide gave an almost complete inhibition at 30 µM with an IC50 of ∼ 10 µM. In summary we report a previously unrecognized crucial role for the RH domain of GRK5 and 6, and the subsequent identification of a lead peptide inhibitor of protein-protein interaction with potential for specific blockade of GPCR desensitization. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vaccines which use the strategy of fusing adjuvant murine â-defensin2 (mBD2) to an antigen in order to elicit stronger anti-antigen immune responses are referred to as murine â-defensin2 (mBD2) vaccines. Previous studies have validated the potential of mBD2 vaccines, thus in this study we focus on increasing vaccine efficacy as well as mechanism elucidation. Initially, we demonstrate superior IFN-ã release levels by antigen specific effector T cells when antigen is crosspresented by dendritic cells (DC) which absorbed mBD2 vaccine (mBD2 fused antigen protein) over antigen alone. We move unto an in vivo model and note significant increases in the expansion of antigen specific class I T cells but not class II T cells when receiving mBD2 vaccine over antigen alone. Further, knowing mBD2’s link with CC chemokine receptor 6 (CCR6) and Toll-like receptor 4 (TLR4) we note that this enhanced class I T cell expansion is CCR6 independent but TLR4 dependent. With anti-tumor responses desired, we demonstrate in tumor protection experiments with mice, compelling tumor protection when combining adoptive T cell therapy and mBD2 vaccine immunization. We further note that mBD2 vaccines are not limited by the antigen and characterize a viable strategy for enhancing tumor antigen immunogenicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of effective treatments for opioid dependence is of great importance given the devastating consequences of the disease. Pharmacotherapies for opioid addiction include opioid agonists, partial agonists, opioid antagonists, and alpha-2-adrenergic agonists, which are targeted toward either detoxification or long-term agonist maintenance. Agonist maintenance therapy is currently the recommended treatment for opioid dependence due to its superior outcomes relative to detoxification. Detoxification protocols have limited long-term efficacy, and patient discomfort remains a significant therapy challenge. Buprenorphine's effectiveness relative to methadone remains a controversy and may be most appropriate for patients in need of low doses of agonist treatment. Buprenorphine appears superior to alpha-2 agonists, however, and office-based treatment with buprenorphine in the USA is gaining support. Studies of sustained-release formulations of naltrexone suggest improved effectiveness for retention and sustained abstinence; however, randomized clinical trials are needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The β2 adrenergic receptor (β2AR) regulates smooth muscle relaxation in the vasculature and airways. Long- and Short-acting β-agonists (LABAs/SABAs) are widely used in treatment of chronic obstructive pulmonary disorder (COPD) and asthma. Despite their widespread clinical use we do not understand well the dominant β2AR regulatory pathways that are stimulated during therapy and bring about tachyphylaxis, which is the loss of drug effects. Thus, an understanding of how the β2AR responds to various β-agonists is crucial to their rational use. Towards that end we have developed deterministic models that explore the mechanism of drug- induced β2AR regulation. These mathematical models can be classified into three classes; (i) Six quantitative models of SABA-induced G protein coupled receptor kinase (GRK)-mediated β2AR regulation; (ii) Three phenomenological models of salmeterol (a LABA)-induced GRK-mediated β2AR regulation; and (iii) One semi-quantitative, unified model of SABA-induced GRK-, protein kinase A (PKA)-, and phosphodiesterase (PDE)-mediated regulation of β2AR signalling. The various models were constrained with all or some of the following experimental data; (i) GRK-mediated β2AR phosphorylation in response to various LABAs/SABAs; (ii) dephosphorylation of the GRK site on the β2AR; (iii) β2AR internalisation; (iv) β2AR recycling; (v) β2AR desensitisation; (vi) β2AR resensitisation; (vii) PKA-mediated β2AR phosphorylation in response to a SABA; and (viii) LABA/SABA induced cAMP profile ± PDE inhibitors. The models of GRK-mediated β2AR regulation show that plasma membrane dephosphorylation and recycling of the phosphorylated β2AR are required to reconcile with the measured dephosphorylation kinetics. We further used a consensus model to predict the consequences of rapid pulsatile agonist stimulation and found that although resensitisation was rapid, the β2AR system retained the memory of prior stimuli and desensitised much more rapidly and strongly in response to subsequent stimuli. This could explain tachyphylaxis of SABAs over repeated use in rescue therapy of asthma patients. The LABA models show that the long action of salmeterol can be explained due to decreased stability of the arrestin/β2AR/salmeterol complex. This could explain long action of β-agonists used in maintenance therapy of asthma patients. Our consensus model of PKA/PDE/GRK-mediated β2AR regulation is being used to identify the dominant β2AR desensitisation pathways under different therapeutic regimens in human airway cells. In summary our models represent a significant advance towards understanding agonist-specific β2AR regulation that will aid in a more rational use of the β2AR agonists in the treatment of asthma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrin adhesion molecules have both positive and negative potential in the regulation of peripheral blood T cell (PB T cell) activation, yet their mechanism of action in the mediation of human T lymphocyte function remains largely undefined. The goals of this study then were to elucidate integrin signaling mechanisms in PB T cells.^ By ligating $\beta$1 integrins with mAb 18D3, it was demonstrated that costimulation of PB T cell proliferation induced by coimmobilizing antibodies specific for $\beta$1, $\beta$2, and $\beta$7 integrin subfamilies in conjunction with the anti-CD3 mAb OKT3 was inhibited. Costimulation of T cell proliferation induced by non-integrins CD4, CD26, CD28, CD44, CD45RA, or CD45RO was unaffected. Inhibition of costimulation correlated with diminished IL-2 production. In his manner, $\beta$1 integrins could regulate heterologous integrins of the $\beta$2 and $\beta$7 subfamilies in a transdominant fashion. It was also demonstrated that integrin costimulation of T cell activation was acutely sensitive to the structural conformation of $\beta$1 integrins. Using the cyclic hexapeptide CWLDVC (TBC772, which is based on the $\alpha4\beta1$ integrin binding site in fibronectin) in soluble form, it was shown that integrins locked into a conformation displaying a neo-epitope called the ligand induced binding site (LIBS) recognized by mAb 15/7 were inhibited from sending mitogenic signals to T cells. When BSA-conjugated TBC772 was coimmobilized with anti-CD3 mAb OKT3, costimulation of proliferation occurred. This suggested that temporally uncoupling integrin receptor occupancy from receptor crosslinking inhibited $\beta$1 integrin signaling mechanisms. When subsets of PB T cells were examined to determine those initially activated by integrins within 6 hours of activation, costimulation induced intracellular accumulation of IL-2 predominantly in the CD4$\sp+$ and CD45RO$\sp+$ T cell subsets. This was similar to a number of PB T cell costimulatory molecules including CD26, CD43, CD44. Only CD28 costimulated IL-2 production from both CD45RA$\sp+$ and CD45RO$\sp+$ subpopulations.^ The GTPase Rho has been implicated in regulating integrin mediated stress fiber formation and anchorage dependent growth in fibroblasts, so studies were initiated to determine if Rho played a role in integrin dependent T cell function. In order to perform this, a technique based on scrape-loading was developed to incorporate macromolecules into PB T cells that maintained their functional activity. With this technique, C3 exoenzyme from Clostridium botulinum was incorporated into PB T cells. C3 ADP-ribosylates Rho proteins on Asn$\sp{41},$ which is in close proximity to the Rho effector domain, rendering it inactive. It was demonstrated that functional Rho is not required for basal or upregulated PB T cell adhesion to $\beta$1 integrin substrates, however PB T cell homotypic aggregation induced by PMA, which is an event mediated predominantly by the integrin $\rm\alpha L\beta2,$ was delayed. PB T cells lacking Rho function displayed altered cell morphology on $\beta$1 integrin ligands, producing stellate, dendritic-like pseudopodia. Rho activity was also found to be required for integrin dependent costimulation of proliferation. When intracellular accumulation of IL-2 was measured, inactivation of Rho prevented both integrin and CD28 costimulatory activity. Rho was identified to lie upstream of signals mediating PKC activation and Ca$\sp{++}$ fluxes, as PMA and ionomycin activation of PB T cells was unaffected by the inactivation of Rho. ^