9 resultados para Behavioral accounting
em DigitalCommons@The Texas Medical Center
Resumo:
Behavioral sensitization is defined as the subsequent augmentation of the locomotor response to a drug following repeated administrations of the drug. It is believed to occur due to alterations in the motive circuit in the brain by stressors, central nervous system stimulants, and similar stimuli. The motive circuit (or mesocorticolimbic system) consists of several interconnected nuclei that determine the behavioral response to significant biological stimuli. A final target of the mesocorticolimbic system is the nucleus accumbens (NAc), which is a key structure linking motivation and action. In particular, the dopaminergic innervations of the Nac are considered to be essential in regulating motivated states of behavior such as goal-directed actions, stimulus-reward associations and reinforcement by addictive substances. Therefore, the objective of this study was to investigate the role of dopaminergic afferents of the NAc in the behavioral sensitization elicited by chronic treatment with methylphenidate (MPD), a psychostimulant that is widely used to treat attention deficit hyperactivity disorder. The dopaminergic afferents can be selectively destroyed using catecholamine neurotoxin 6-hydroxydopamine (6-OHDA). In order to determine whether destruction of dopaminergic afferents of the NAc prevents sensitization, I compared locomotor activity in rats that had received infusions of 6-hydroxydopamine (6-OHDA) into the NAc with that of control and sham-operated animals. All groups of rats received six days of single daily MPD injections after measuring their pre and post surgery locomotor baseline. Following the consecutive MPD injections, there was a washout period of 4 days, where no injections were given. Then, a rechallenge injection of MPD was given. Behavioral responses after repeated MPD were compared to those after acute MPD to assess behavioral sensitization. Expression of sensitization to MPD was not prevented by 6-OHDA infusion into the NAc. Moreover, two distinct responses were seen to the acute injection of MPD: one group of rats had essentially no response to acute MPD, while the other had an augmented (‘sensitized’-like) acute response. Among rats with 6-OHDA infusions, the animals with diminished acute response to MPD had intact behavioral sensitization to repeated MPD, while the animals with increased acute response to MPD did not exhibit further sensitization to it. This suggests that the acute and chronic effects of MPD have distinct underlying neural circuitries.
Resumo:
BACKGROUND: The recreational use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) among adolescents and young adults has become increasingly prevalent in recent years. While evidence suggests that the long-term consequences of MDMA use include neurodegeneration to serotonergic and, possibly, dopaminergic pathways, little is known about susceptibility, such as behavioral sensitization, to MDMA. METHODS: The objectives of this study were to examine the dose-response characteristics of acute and chronic MDMA administration in rats and to determine whether MDMA elicits behavioral sensitization and whether it cross-sensitizes with amphetamine and methylphenidate. Adult male Sprague-Dawley rats were randomly divided into three MDMA dosage groups (2.5 mg/kg, 5.0 mg/kg, and 10.0 mg/kg) and a saline control group (N = 9/group). All three MDMA groups were treated for six consecutive days, followed by a 5-day washout, and subsequently re-challenged with their respective doses of MDMA (day 13). Rats were then given an additional 25-day washout period, and re-challenged (day 38) with similar MDMA doses as before followed by either 0.6 mg/kg amphetamine or 2.5 mg/kg methylphenidate on the next day (day 39). Open-field locomotor activity was recorded using a computerized automated activity monitoring system. RESULTS: Acute injection of 2.5 mg/kg MDMA showed no significant difference in locomotor activity from rats given saline (control group), while animals receiving acute 5.0 mg/kg or 10.0 mg/kg MDMA showed significant increases in locomotor activity. Rats treated chronically with 5.0 mg/kg and 10.0 mg/kg MDMA doses exhibited an augmented response, i.e., behavioral sensitization, on experimental day 13 in at least one locomotor index. On experimental day 38, all three MDMA groups demonstrated sensitization to MDMA in at least one locomotor index. Amphetamine and methylphenidate administration to MDMA-sensitized animals did not elicit any significant change in locomotor activity compared to control animals. CONCLUSION: MDMA sensitized to its own locomotor activating effects but did not elicit any cross-sensitization with amphetamine or methylphenidate.
Resumo:
The electrophysiological properties of acute and chronic methylphenidate (MPD) on neurons of the prefrontal cortex (PFC) and caudate nucleus (CN) have not been studied in awake, freely behaving animals. The present study was designed to investigate the dose-response effects of MPD on sensory evoked potentials recorded from the PFC and CN in freely behaving rats previously implanted with permanent electrodes, as well as their behavioral (locomotor) activities. On experimental day 1, locomotor behavior of rats was recorded for 2 h post-saline injection, and sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10 mg/kg, i.p., MPD administration. Animals were injected for the next five days with daily 2.5 mg/kg MPD to elicit behavioral sensitization. Locomotor recording was resumed on experimental days 2 and 6 after the MPD maintenance dose followed by 3 days of washout. On experimental day 10, rats were connected again to the electrophysiological recording system and rechallenged with saline and the identical MPD doses as on experimental day 1. On experimental day 11, rat's locomotor recording was resumed before and after 2.5 mg/kg MPD administration. Behavioral results showed that repeated administration of MPD induced behavioral sensitization. Challenge doses (0.6, 2.5, and 10.0 mg/kg) of MPD on experimental day 1 elicited dose-response attenuation in the response amplitude of the average sensory evoked field potential components recorded from the PFC and CN. Chronic MPD administration resulted in attenuation of the PFC's baseline recorded on experimental day 10, while the same treatment did not modulate the baseline recorded from the CN. Treatment of MPD on experimental day 10 resulted in further decrease of the average sensory evoked response compared to that obtained on experimental day 1. This observation of further decrease in the electrophysiological responses after chronic administration of MPD suggests that the sensory evoked responses on experimental day 10 represent neurophysiological sensitization. Moreover, two different response patterns were obtained from PFC and CN following chronic methylphenidate administration. In PFC, the baseline and effect of methylphenidate expressed electrophysiological sensitization on experimental day 10, while recording from CN did not exhibit any electrophysiological sensitization.
Resumo:
As the definition of what is considered a family changes in our society, the family unit itself continues to undergo changes. These changes can sometimes lead to decreased stability within the family unit. One of the greatest challenges facing those researching this phenomenon is the lack of consistency within the existing body of research surrounding what familial instability actually is (the definition). This critical review of the literature examines the current body of literature in order to identify what is known about family stability and its impact on adolescent behavior, as well as what gaps currently exist. This review focuses on definitions of family stability, current factors surrounding the stability of the family unit, and addresses the implications that the current body of literature presents.
Resumo:
The current study evaluates the effectiveness of an intensive home-based treatment program, Families First, on the behaviors of children and adolescents suffering from mental disorders and being at risk for out-ofi home placement. The sample included 85 youngsters and their families from a semi-rural community. The Diagnostic Interview for Children and Adolescents-Revised (DICA-R) was administered to the children, and the Child Behavior Checklist (CBCL) was completed by a parent at pretreatment and posttreatment. The families participated in a 4-6 week, intensive home intervention where crisis intervention, social support services, and needed psychological services were offered. The results indicated that both externalizing and internalizing behavior problems in youngsters with different diagnoses of mental disorders were significantly reduced at posttreatment as indicated by their CBCL scores. Furthermore, youngsters with a diagnosis of Oppositional Defiant Disorder seemed to benefit the most, as evidenced by the improved scores on most subscales of the CBCL. Youngsters with mood disorders and conduct disorders seemed to benefit in their most deficient areas, internalizing behavior problems and delinquent behaviors, respectively. Finally, after participating in Families First, more than half of the youngsters in the sample were able to stay home with their families
Resumo:
Background: Given that an alarming 1 in 5 children in the USA are at risk of hunger (1 in 3 among black and Latino children), and that 3.9 million households with children are food insecure, it is crucial to understand how household food insecurity (HFI) affects the present and future well-being of our children. Purpose: The objectives of this review article are to: (i) examine the association between HFI and child intellectual, behavioral and psycho-emotional development, controlling for socio-economic indicators; (ii) review the hypothesis that HFI is indeed a mediator of the relationship between poverty and poor child development outcomes; (iii) examine if the potential impact of HFI on caregivers’ mental health well-being mediates the relationship between HFI and child development outcomes. Methods: Pubmed search using the key words “food insecurity children.” For articles to be included they had to: (i) be based on studies measuring HFI using an experience-based scale, (ii) be peer reviewed, and (iii) include child intellectual, behavioral and/or socio-emotional development outcomes. Studies were also selected based on backward and forward Pubmed searches, and from the authors’ files. After reviewing the abstracts based on inclusion criteria a total of 26 studies were selected. Results: HFI represents not only a biological but also a psycho-emotional and developmental challenge to children exposed to it. Children exposed to HFI are more likely to internalize or externalize problems, as compared to children not exposed to HFI. This in turn is likely to translate into poor academic/cognitive performance and intellectual achievement later on in life. A pathway through which HFI may affect child development is possibly mediated by caregivers’ mental health status, especially parental stress and depression. Thus, HFI is likely to foster dysfunctional family environments. Conclusion: Findings indicate that food insecure households may require continued food assistance and psycho-emotional support until they transition to a “stable” food secure situation. This approach will require a much better integration of social policies and access to programs offering food assistance and mental health services to those in need. Findings also fully justify increased access of vulnerable children to programs that promote early in life improved nutrition as well as early psycho-social and cognitive stimulation opportunities.
Resumo:
During the fifty-five years since the origin of the modern concept of stress, a variety of neurochemical, physiological, behavioral and pathological data have been collected in order to define stress and catalogue the components of the stress response. Over the last twenty-five years, as interest in the neural mechanisms underlying the stress response grew, most of the studies have focused on the hypothalamus and major limbic structures such as the amygdala or on nuclei involved in neurochemical changes observed during stress. There are other CNS sites, such as the bed nucleus of the stria terminalis (BNST), that neuroanatomical and neurochemical studies suggest may be involved in stress, but these sites have rarely been studied. Four experiments were performed for this dissertation, the goal of which was to examine the BNST to determine its role in the regulation of the stress response. The first experiment demonstrated that electrical stimulation of BNST was sufficient to produce stress-like behaviors. The second experiment demonstrated that single BNST neurons altered their firing rate in response to both a noxious somatosensory stimulus such as tail pinch and electrical stimulation of the amygdala (AmygS). The third experiment showed that the opioid, cholinergic, and noradrenergic systems, three neurotransmitter systems implicated in the control of the stress response, were effective in altering the firing rate of BNST neurons. The fourth experiment demonstrated that the cholinergic effects were mediated via muscarinic receptors and showed that the effects of AmygS were not mediated via cholinergic pathways. Collectively, these findings provide a possible explanation for the nonspecificity in causation of stress and the invariability of the stress response and suggest a neurochemical basis for its pharmacological control. ^
Resumo:
Reproductive hormones have effects on the nervous system not directly related to reproductive function. In the rat, for example, luteinizing hormone releasing hormone has dramatic effects on learning and memory. The present work attempts to examine the effects of reproductive hormones on non-reproductive behaviors and the neural loci and mechanisms underlying these effects in Aplysia, an animal whose behaviors, reproductive hormones and neural circuitry have been well characterized.^ In Aplysia, the neurosecretory bag cells release several peptides that are responsible for eliciting egg laying. The effects of these peptides on the defensive tail-siphon withdrawal reflex, as well as sensitization of this reflex, were examined. Sensitization, a simple form of nonassociative learning, refers to the behavioral enhancement of a response to a test stimulus after the presentation of a strong stimulus, that may last minutes (short-term) or days (long-term). An extract of the bag cells (BCE) inhibited the baseline siphon component of the tail-siphon withdrawal reflex and suppressed long-term, but not short-term, sensitization of the reflex. Preliminary experiments suggest that BCE also affects the tail component of the tail-siphon withdrawal reflex.^ To determine the neural mechanisms underlying the inhibition of the baseline reflex, electrophysiological studies were performed using an in vitro analogue of the tail-siphon withdrawal reflex to examine the ability of BCE, as well as the individual bag cell peptides (BCPs), to modulate the circuitry of the reflex. Bag cell extract attenuated the synaptic strength of the monosynaptic connections between tail sensory neurons and tail motor neurons. When individually applied only $\beta$-BCP produced a similar attenuation. This effect of $\beta$-BCP was not dependent on changes in duration of the presynaptic action potential.^ An in vitro analogue of long-term sensitization training was developed to examine the mechanisms by which the BCPs may affect long-term sensitization of the tail-siphon withdrawal reflex. This analogue exhibited both short- and long-term facilitation of the connections between the tail sensory and motor neurons.^ The results of these behavioral and electrophysiological experiments suggest that the BCPs inhibit the tail-siphon withdrawal reflex, at least in part, by modulating the synaptic strength of the connections between the sensory neurons and motor neurons underlying the reflex. One candidate for this effect is $\beta$-BCP. Thus, the peptides which elicit egg laying may also serve other functions such as the inhibition of defensive reflexes. In addition, these experiments raise the possibility that BCPs may exert a long lasting effect ($>$24 hr), suppressing long-term sensitization of the tail-siphon withdrawal reflex. ^
Resumo:
Nerve injury is known to produce a variety of electrophysiological and morphological neuronal alterations (reviewed by Titmus and Faber, 1990; Bulloch and Ridgeway, 1989; Walters, 1994). Determining if these alterations are adaptive and how they are activated and maintained could provide important insight into basic cellular mechanisms of injury-induced plasticity. Furthermore, characterization of injury-induced plasticity provides a useful assay system for the identification of possible induction signals underlying these neuronal changes. Understanding fundamental mechanisms and underlying induction signals of injury-induced neuronal plasticity could facilitate development of treatment strategies for neural injury and neuropathic pain in humans.^ This dissertation characterizes long-lasting, injury-induced neuronal alterations using the nervous system of Aplysia californica as a model. These changes are examined at the behavioral, electrophysiological, and morphological levels. Injury-induced changes in the electrophysiological properties of neurons were found that increased the signaling effectiveness of the injured neurons. This increase in signalling effectiveness could act to compensate for partial destruction of the injured neuron's peripheral processes. Recovery of a defensive behavioral response which serves to protect the animal from further injury was found within 2 weeks of injury. For the behavioral recovery to occur, new neural pathways must have been formed between the denervated area and the CNS. This was found to be mediated at least in part by new axonal growth which extended from the injured cell back along the original pathway (i.e. into the injured nerve). In addition, injury produced central axonal sprouting into different nerves that do not usually contain the injured neuron's axons. This could be important for (i) finding alternative pathways to the periphery when the original pathways are impassable and (ii) the formation of additional synaptic connections with post-synaptic targets which would further enhance the signalling effectiveness of the injured cell. ^