8 resultados para Bacteriophage 434 repressor
em DigitalCommons@The Texas Medical Center
Resumo:
Bacteriophage BPP-1, which infects Bordetella species, can switch its specificity by mutations to the ligand-binding surface of its major tropism-determinant protein, Mtd. This targeted mutagenesis results from the activity of a phage-encoded diversity-generating retroelement. Purified Mtd binds its receptor with low affinity, yet BPP-1 binding and infection of Bordettella cells are efficient because of high-avidity binding between phage-associated Mtd and its receptor. Here, using an integrative approach of three-dimensional (3D) structural analyses of the entire phage by cryo-electron tomography and single-prticle cryo-electron microscopy, we provide direct localization of Mtd in the phage and the structural basis of the high-avidity binding of the BPP-1 phage. Our structure shows that each BPP-1 particle has a T = 7 icosahedral head and an unusual tail apparatus consisting of a short central tail "hub," six short tail spikes, and six extended tail fibers. Subtomographic averaging of the tail fiber maps revealed a two-lobed globular structure at the distal end of each long tail fiber. Tomographic reconstructions of immuno-gold-labeled BPP-1 directly localized Mtd to these globular structures. Finally, our icosahedral reconstruction of the BPP-1 head at 7A resolution reveals an HK97-like major capsid protein stabilized by a smaller cementing protein. Our structure represents a unique bacteriophage reconstruction with its tail fibers and ligand-binding domains shown in relation to its tail apparatus. The localization of Mtd at the distal ends of the six tail fibers explains the high avidity binding of Mtd molecules to cell surfaces for initiation of infection.
Resumo:
A plasmid based genetic system was developed for the tail protein of the Salmonella typhimurium bacteriophage P22 and used to isolate and characterize tail protein mutants. The tail protein is a trimeric structural protein of the phage and an endorhamnosidase whose activity is essential for infection. The gene for the tail protein has previously been cloned into a plasmid expression vector and sequenced. A plate complementation assay for tail protein produced from the cloned gene was developed and used to isolate 27 tail protein mutants following mutagenesis of the cloned gene. These mutations were mapped into 12 deletion intervals using deletions which were made on plasmids in vitro and crossed onto P22. The base substitutions were determined by DNA sequencing. The majority of mutants had missense or nonsense mutations in the protein coding portion of the gene; however four of the mutants were in the putative transcription terminator. The oligomeric state of tail protein from the 15 missense mutants was investigated using SDS and nondenaturing polyacrylamide gel electrophoresis of cell lysates. Wild-type tail protein retains its trimeric structure in SDS gels at room temperature. Two of the mutant proteins also migrated as trimers in SDS gels, yet one of these had a considerably faster mobility than wild-type trimer. Its migration was the same as wild-type in a nondenaturing gel, so it is thought to be a trimer which is partially denatured by SDS. Four of the mutants produced proteins which migrate at the position of a monomer in an SDS gel but cannot be seen on a nondenaturing gel. These proteins are thought to be either monomers or soluble aggregates which cannot enter the nondenaturing gel. The remainder of mutants produce protein which is degraded. The mutant tail protein which had normal trimeric mobility on SDS and nondenaturing gels was purified. This protein has essentially wild-type ability to attach to phage capsids, but its endorhamnosidase activity is only 4% of wild-type. ^
Resumo:
The VirB11 ATPase is an essential component of an Agrobacterium tumefaciens type IV bacterial secretion system that transfers oncogenic nucleoprotein complexes to susceptible plant cells. This dissertation investigates the subcellular localization and homo-oligomeric state of the VirB11 ATPase in order to provide insights about the assembly of the protein as a subunit of this membrane-associated transfer system. Subcellular fractionation studies and quantitative immunoblot analysis demonstrated that $\sim$30% of VirB11 partitioned as soluble protein and $\sim$70% was tightly associated with the bacterial cytoplasmic membrane. No differences were detected in VirB11 subcellular localization and membrane association in the presence or absence of other transport system components. Mutations in virB11 affecting protein function were mapped near the amino terminus, just upstream of a region encoding a Walker 'A' nucleotide-binding site, and within the Walker 'A' motif partitioned almost exclusively with the cytoplasmic membrane, suggesting that an activity associated with nucleotide binding could modulate the affinity of VirB11 for the cytoplasmic membrane. Merodiploid analysis of VirB11 mutant and truncation derivatives provided strong evidence that VirB11 functions as a homo- or heteromultimer and that the C-terminal half of VirB11 contains a protein interaction domain. A combination of biochemical and molecular genetic approaches suggested that VirB11 and the green fluorescence protein (GFP) formed a mixed multimer as demonstrated by immunoprecipitation experiments with anti-GFP antibodies. Second, a hybrid protein composed of VirB11 fused to the N-terminal DNA-binding domain of bacteriophage $\lambda$ cI repressor conferred immunity to $\lambda$ superinfection, demonstrating that VirB11 self-association promotes dimerization of the chimeric repressor. A conserved Walker 'A' motif, though required for VirB11 function in T-complex export, was not necessary for VirB11 self-association. Sequences in both the N- and the C-terminal halves of the protein were found to contribute to self-association of the full length protein. Chemical cross-linking experiments with His$\sb6$ tagged VirB11 suggested that VirB11 probably assembles into a higher order homo-oligomeric complex. ^
Resumo:
Epidermal Growth Factor Receptor (EGFR) overexpression occurs in about 90% of Head and Neck Squamous Cell Carcinoma (HNSCC) cases. Aberrant EGFR signaling has been implicated in the malignant features of HNSCC. Thus, EGFR appears to be a logical therapeutic target with increased tumor specificity for the treatment of HNSCC. Erlotinib, a small molecule tyrosine kinase inhibitor, specifically inhibits aberrant EGFR signaling in HNSCC. Only a minority of HNSCC patients were able to derive a substantial clinical benefit from erlotinib. ^ This dissertation identifies Epithelial to Mesenchymal Transition (EMT) as the biological marker that distinguishes EGFR-dependent (erlotinib-sensitive) tumors from the EGFR-independent (erlotinib-resistant) tumors. This will allow us to prospectively identify the patients who are most likely to benefit from EGFR-directed therapy. More importantly, our data identifies the transcriptional repressor DeltaEF1 as the mesenchymal marker that controls EMT phenotype and resistance to erlotinib in human HNSCC lines. si-RNA mediated knockdown of DeltaEF1 in the erlotinib-resistant lines resulted in reversal of the mesenchymal phenotype to an epithelial phenotype and significant increase in sensitivity to erlotinib. ^ DeltaEF1 represses the expression of the epithelial markers by recruiting HDACs to chromatin. This observation allows us to translate our findings into clinical application. To test whether the transcriptional repression by DeltaEF1 underlines the mechanism responsible for erlotinib resistance, erlotinib-resistant lines were treated with an HDAC inhibitor (SAHA) followed by erlotinib. This resulted in a synergistic effect and substantial increase in sensitivity to erlotinib in the resistant cell lines. Thus, combining an HDAC inhibitor with erlotinib represents a novel promising pharmacologic strategy for reversing resistance to erlotinib in HNSCC patients. ^
Resumo:
The Armadillo family catenin proteins function in multiple capacities including cadherin-mediated cell-cell adhesion and nuclear signaling. The newest catenin, p120 catenin, differs from the classical catenins and binds to the membrane-proximal domain of cadherins. Recently, a novel transcription factor Kaiso was found to interact with p120 catenin, suggesting that p120 catenin also possesses a nuclear function. We isolated the Xenopus homolog of Kaiso, XKaiso, from a Xenopus stage 17 cDNA library. XKaiso contains an amino-terminal BTB/POZ domain and three carboxyl-terminal zinc fingers. The XKaiso transcript was present maternally and expressed throughout early embryonic development. XKaiso's spatial expression was defined via in situ hybridization and was found localized to the brain, eye, ear, branchial arches, and spinal cord. Co-immunoprecipitation of Xenopus p120 catenin and XKaiso demonstrated their mutual association, while related experiments employing differentially epitope-tagged XKaiso constructs suggest that XKaiso also self-associates. On the functional level, reporter assays employing a chimera of XKaiso fused to the GAL4 DNA binding domain indicated that XKaiso is a transcriptional repressor. To better understand the significance of the Kaiso-p120 catenin complex in vertebrate development, Kaiso knock-down experiments were undertaken, and the modulatory role of p120 catenin in Kaiso function examined during Xenopus development. Using morpholino antisense oligonucleotides to block translation of XKaiso, XKaiso was found to be essential for Xenopus gastrulation, being required for correct morphogenetic movements in early embryogenesis. Molecular marker analyses indicated that one target gene of the Wnt/β-catenin pathway, Siamois, is significantly increased in embryos depleted for XKaiso, while other dorsal, ventral, and mesodermal cell fate markers were unaltered. In addition, the non-canonical Wnt-11, known to participate in planar cell polarity/convergent extension processes, was significantly upregulated following depletion of XKaiso. Such increased Wnt-11 expression likely contributed to the XKaiso depletion phenotype because a dominant negative form of Wnt-11 or of the downstream effector Dishevelled partially rescued the observed gastrulation defects. These results show that XKaiso is essential for proper gastrulation movements, resulting at least in part from its modulation of non-canonical Wnt signaling. The significance of the XKaiso-p120 catenin interaction has yet to be determined, but appears to include a role in modulating genes promoting canonical and non-canonical Wnt signals. ^