2 resultados para Babcock, O. E.
em DigitalCommons@The Texas Medical Center
Resumo:
Mounting an effective response to tissue damage requires a concerted effort from a number of systems, including both the immune and nervous systems. Immune-responsive blood cells fight infection and clear debris from damaged tissues, and specialized pain receptors become hypersensitive to promote behavior that protects the damaged area while it heals. To uncover the cellular and molecular mechanisms underlying these processes, we have developed a genetically tractable invertebrate model of damage-induced inflammation and pain hypersensitivity using Drosophila larvae. To study wound-induced inflammation, we generated transgenic larvae with fluorescent epidermal cells and blood cells (hemocytes). Using live imaging, we monitored the circulatory dynamics of hemocytes and the methods by which they accumulate at epidermal wounds. We found that circulating hemocytes attach to wound sites directly from circulation, a mechanism once thought to work exclusively in species with a closed circulatory system. To study damage-induced pain hypersensitivity, we developed a “sunburn assay” and found that larvae have a lowered pain threshold (allodynia) and an exaggerated response to noxious stimuli (hyperalgesia) following UV damage. We screened for genes required for hypersensitivity in pain receptors (nociceptors), and discovered a number of novel mediators that have well conserved mammalian homologs. Together, these results help us to understand how various cell types in the immune and nervous systems both detect and respond to tissue damage.
Resumo:
Pertussis is an infectious disease caused by the bacteria Bordetella pertussis, and is associated with a serious respiratory infection, a prolonged cough, and can require hospitalization. A vaccine for adolescents and adults has been available since 2005. This paper examines one recommended immunization strategy to prevent pertussis among infants, called “cocooning.” The strategy focuses on creating immunity among adult caregivers so they serve as a protective cocoon to the newborns, who are too young to be vaccinated. This paper looks at relevant studies summarizing implementation of cocooning strategies and addresses the question – Does the research literature support the view of using cocooning as an effective strategy to prevent pertussis in infants? After exclusions, 8 studies remained for synthesis. The evidence shows that cocooning is complex strategy and the evidence is mixed when it comes to ensuring an increase in immunization of caregivers. ^