1 resultado para BUCK

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our laboratory has developed and partially characterized a strain of New Zealand white rabbits that are resistant to the hypercholesterolemia which typically occurs in normal rabbits when fed a cholesterol-enriched diet. This phenotype is most likely attributed to an increase in bile acid excretion by hypercholesterolemia-resistant (CRT) rabbits as a result of elevated enzyme activity of cholesterol 7$\alpha$-hydroxylase (C7$\alpha$H), the rate-limiting enzyme in bile acid synthesis. Northern analysis revealed that CRT rabbits, in comparison to normal rabbits, have a 7-fold greater steady-state C7$\alpha$H mRNA levels irrespective of dietary regimen. The C7$\alpha$H gene in both phenotypes was determined to be a single copy gene. The hypothesis was that the elevated C7$\alpha$H mRNA levels in CRT rabbits, in comparison to normal animals, was due to an increase in the transcription rate of the C7$\alpha$H gene as a result of a mutation in a cis-acting element and/or a trans-acting factor within the hepatocyte. To isolate the C7$\alpha$H gene from both normal and CRT rabbits, genomic libraries were prepared from both phenotypes into $\lambda$GEM12 vectors using conventional techniques. Three CRT and one normal phage clones that contained the C7$\alpha$H gene were identified by screening the library with a series of probes located within different exons of the C7$\alpha$H cDNA. Sequencing analysis confirmed that approximately 1100 bp of the C7$\alpha$H 5'-flanking region from both normal and CRT phenotypes was identical. The increase in C7$\alpha$H mRNA levels was not attributed to a cis-acting mutation within this region. Liver nuclear extracts were prepared from normal and CRT rabbits maintained either on a basal or 0.25% cholesterol-enriched diet and incubated with several radiolabeled DNA fragments from the C7$\alpha$H gene. A 37 basepair region, located between nucleotides $-$452 to $-$416 was identified that had altered binding patterns between normal and CRT rabbits as a function of diet. Two additional regions, $-$747 to $-$575 and $-$580 to $-$442, produced banding patterns which were identical, irrespective of phenotype or diet. In conclusion, these studies suggested that the increase in C7$\alpha$H mRNA in CRT rabbits was due to differences in binding of a cholesterol-responsive transcription factor to the C7$\alpha$H promoter. ^