17 resultados para BIOGENESIS
em DigitalCommons@The Texas Medical Center
Resumo:
The VirB/D4 type IV secretion system (T4SS) of Agrobacterium tumefaciens functions to transfer substrates to infected plant cells through assembly of a translocation channel and a surface structure termed a T-pilus. This thesis is focused on identifying contributions of VirB10 to substrate transfer and T-pilus formation through a mutational analysis. VirB10 is a bitopic protein with several domains, including a: (i) cytoplasmic N-terminus, (ii) single transmembrane (TM) α-helix, (iii) proline-rich region (PRR), and (iv) large C-terminal modified β-barrel. I introduced cysteine insertion and substitution mutations throughout the length of VirB10 in order to: (i) test a predicted transmembrane topology, (ii) identify residues/domains contributing to VirB10 stability, oligomerization, and function, and (iii) monitor structural changes accompanying energy activation or substrate translocation. These studies were aided by recent structural resolution of a periplasmic domain of a VirB10 homolog and a ‘core’ complex composed of homologs of VirB10 and two outer membrane associated subunits, VirB7 and VirB9. By use of the substituted cysteine accessibility method (SCAM), I confirmed the bitopic topology of VirB10. Through phenotypic studies of Ala-Cys insertion mutations, I identified “uncoupling” mutations in the TM and β-barrel domains that blocked T-pilus assembly but permitted substrate transfer. I showed that cysteine replacements in the C-terminal periplasmic domain yielded a variety of phenotypes in relation to protein accumulation, oligomerization, substrate transfer, and T-pilus formation. By SCAM, I also gained further evidence that VirB10 adopts different structural states during machine biogenesis. Finally, I showed that VirB10 supports substrate transfer even when its TM domain is extensively mutagenized or substituted with heterologous TM domains. By contrast, specific residues most probably involved in oligomerization of the TM domain are required for biogenesis of the T-pilus.
Resumo:
Agrobacterium VirB2 pilin is required for assembly of the VirB/VirD4 type IV secretion system (T4SS). The propilin is processed by signal sequence cleavage and covalent linkage of the N and C termini, and the cyclized pilin integrates into the inner membrane (IM) as a pool for assembly of the secretion channel and T pilus. Here, by use of the substituted cysteine accessibility method (SCAM), we defined the VirB2 IM topology and then identified distinct contributions of the T4SS ATPase subunits to the pilin structural organization. Labeling patterns of Cys-substituted pilins exposed to the membrane-impermeative, thiol-reactive reagent 3-(N-maleimidopropionyl)biocytin (MPB) supported a topology model in which two hydrophobic stretches comprise transmembrane domains, an intervening hydrophilic loop (residues 90 to 94) is cytoplasmic, and the hydrophilic N and C termini joined at residues 48 and 121 form a periplasmic loop. Interestingly, the VirB4 ATPase, but not a Walker A nucleoside triphosphate (NTP) binding motif mutant, induced (i) MPB labeling of Cys94, a residue that in the absence of the ATPase is located in the cytoplasmic loop, and (ii) release of pilin from the IM upon osmotic shock. These findings, coupled with evidence for VirB2-VirB4 complex formation by coimmunoprecipitation, support a model in which VirB4 functions as a dislocation motor to extract pilins from the IM during T4SS biogenesis. The VirB11 ATPase functioned together with VirB4 to induce a structural change in the pilin that was detectable by MPB labeling, suggestive of a role for VirB11 as a modulator of VirB4 dislocase activity.
Resumo:
MicroRNAs play roles in various biological processes like development, tumorigenesis, metastasis and pluripotency. My thesis work has demonstrated roles for p63, a p53 family member, in the upstream regulation of microRNA biogenesis. The p63 gene has a complex gene structure and has multiple isoforms. The TAp63 isoforms contain an acidic transcription activation domain. The ΔNp63 isoforms, lack the TA domain, but have a proline rich region critical for gene transactivation. To understand the functions of these isoforms, the Flores lab generated TAp63 and ΔNp63 conditional knock out mice. Using these mice and tissues and cells from these mice we have found that TAp63 transcriptionally regulates Dicer while ΔNp63 transcriptionally regulates DGCR8. TAp63 -/- mice are highly tumor prone. These mice develop metastatic mammary adenocarcinomas, squamous cell carcinomas, and lung adenocarcinomas to distant sites including the liver, lungs, and brain. I found that TAp63 suppresses metastasis by transcriptionally activating Dicer. TAp63 and Dicer levels were very low or lost in high grade human tumors like mammary adenocarcinomas, squamous cell carcinomas, and lung adenocarcinomas. Expression of Dicer in these tumor cell lines reduced their invasiveness. Using ΔNp63 -/- mice, I found that ΔNp63 transcriptionally activates DGCR8, resulting in a miRNA profile that is critical to reprogram cells to pluripotency. Analysis of epidermal cells derived from ΔNp63 -/- mice revealed that these cells expressed markers of pluripotency, including Sox2, Oct 4 and Nanog; however, genome-wide analysis revealed a novel profile of genes that are common between ΔNp63 -/- epidermal cells and embryonic stem cells. I also found that mouse cells depleted of ΔNp63 form chimeric mice and teratomas in SCID mice, demonstrating that ΔNp63 deficient cells are pluripotent. Further, I found that restoration of DGCR8 in ΔNp63 -/- epidermal cells reduces their pluripotency and induces terminal differentiation. I also demonstrated that iMS (induced multipotent stem) cells could be generated using human keratinocytes by knockdown of ∆Np63 or DGCR8. Taken together, my work has placed p63 and its isoforms at a critical node in controlling miRNA biogenesis.
Resumo:
The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) delivers oncogenic T-DNA and effector proteins to susceptible plant cells. This leads to the formation of tumors termed Crown Galls. The VirB/D4 T4SS is comprised of 12 subunits (VirB1 to VirB11 and VirD4), which assemble to form two structures, a secretion channel spanning the cell envelope and a T-pilus extending from the cell surface. In A. tumefaciens, the VirB2 pilin subunit is required for assembly of the secretion channel and is the main subunit of the T-pilus. The focus of this thesis is to define key reactions associated with the T4SS biogenesis pathway involving the VirB2 pilin. Topology studies demonstrated that VirB2 integrates into the inner membrane with two transmembrane regions, a small cytoplasmic loop, and a long periplasmic loop comprised of covalently linked N and C termini. VirB2 was shown by the substituted cysteine accessibility method (SCAM) to adopt distinct structural states when integrated into the inner membrane and when assembled as a component of the secretion channel and the T-pilus. The VirB4 and VirB11 ATPases were shown by SCAM to modulate the structural state of membrane-integrated VirB2 pilin, and evidence was also obtained that VirB4 mediates extraction of pilin from the membrane. A model that VirB4 functions as a pilin dislocase by an energy-dependent mechanism was further supported by coimmunoprecipitation and osmotic shock studies. Mutational studies identified two regions of VirB10, an N-terminal transmembrane domain and an outer membrane-associated domain termed the antennae projection, that contribute selectively to T-pilus biogenesis. Lastly, characterization of a VirB10 mutant that confers a ‘leaky’ channel phenotype further highlighted the role of VirB10 in gating substrate translocation across the outer membrane as well as T-pilus biogenesis. Results of my studies support a working model in which the VirB4 ATPase catalyzes dislocation of membrane-integrated pilin, and distinct domains of VirB10 coordinate pilin incorporation into the secretion channel and the extracellular T-pilus.
Resumo:
Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).
Resumo:
Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).
Resumo:
The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3-12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms.
Resumo:
The major goal of this work was to define the role of accessory protein, NARJ, in assembly of nitrate reductase which is a membrane-bound multisubunit enzyme that can catalyze the reduction of nitrate to nitrite under anaerobic growth in E. coli. Nitrate reductase is encoded by the nar GHJI operon under control of the narG promoter. The purified nitrate reductase is composed of three subunits: $\alpha,\ \beta,$ and $\gamma.$ The NARJ protein which is encoded by the third gene (narJ) is not found to be associated with any of the purified preparations of the enzyme, but is required for active nitrate reductase. In this study the product of the narJ gene was identified. NARJ appeared to be produced at a reduced level, compared to the other proteins encoded by the nar operon. Since NARJ could not be overexpressed to a level for an efficient purification, NARJ was expressed and purified as a recombinant protein with polyhistidine tag. The recombinant protein NARJ-6His could functionally replace native NARJ. Purified NARJ-6His is a dimeric protein which contains no identifiable cofactors or unique secondary structure. NARJ was localized in the cytoplasm, and was not associated with nitrate reductase in the membrane. In vivo NARJ activated the $\alpha\beta$ complex and stabilized the $\alpha$ subunit against protease degradation. In the absence of the membrane-bound $\gamma$ subunit, NARJ formed an intermediate complex with $\alpha\beta$ in the cytosol. Based on these studies, NARJ fits the formal definition of a molecular chaperone. It appears to be required only for the biogenesis of nitrate reductase and, therefore, is defined as a private chaperone specifically involved in the assembly of nitrate reductase system. ^
Resumo:
mRNA 3′ polyadenylation is central to mRNA biogenesis in prokaryotes and eukaryotes, and is implicated in numerous aspects of mRNA metabolism, including efficiency of mRNA export from the nucleus, message stability, and initiation of translation. However, due to the great complexity of the eukaryotic polyadenylation apparatus, the mechanisms of RNA 3 ′ end processing have remained elusive. Although the RNA processing reactions leading to polyadenylated messenger RNA have been studied in many systems, and much progress has been made, a complete understanding of the biochemistry of the poly(A) polymerase enzyme is still lacking. My research uses Vaccinia virus as a model system to gain a better understanding of this complicated polyadenylation process, which consist of RNA binding, catalysis and polymerase translocation. ^ Vaccinia virus replicates in the cytoplasm of its host cell, so it must employ its own poly(A) polymerase (PAP), a heterodimer of two virus encoded proteins, VP55 and VP39. VP55 is the catalytic subunit, adding 30 adenylates to a non-polyadenylated RNA in a rapid processive manner before abruptly changing to a slow, non-processive mode of adenylate addition and dissociating from the RNA. VP39 is the stimulatory subunit. It has no polyadenylation catalytic activity by itself, but when associated with VP55 it facilitates the semi-processive synthesis of tails several hundred adenylates in length. ^ Oligonucleotide selection and competition studies have shown that the heterodimer binds a minimal motif of (rU)2 (N)25 U, the “heterodimer binding motif”, within an oligonucleotide, and its primer selection for polyadenylation is base-type specific. ^ Crosslinking studies using photosensitive uridylate analogs show that within a VP55-VP39-primer ternary complex, VP55 comes into contact with all three required uridylates, while VP39 only contacts the downstream uridylate. Further studies, using a backbone-anchored photosensitive crosslinker show that both PAP subunits are in close proximity to the downstream −10 to −21 region of 50mer model primers containing the heterodimer binding motif. This equal crosslinking to both subunits suggests that the dimerization of VP55 and VP39 creates either a cleft or a channel between the two subunits through which this region of RNA passes. ^ Peptide mapping studies of VP39 covalently crosslinked to the oligonucleotide have identified residue R107 as the amino acid in close proximity to the −10 uridylate. This helps us project a conceptual model onto the known physical surface of this subunit. In the absence of any tertiary structural data for VP55, we have used a series of oligonucleotide selection assays, as well as crosslinking, nucleotide transfer assays, and gel shift assays to gain insight into the requirements for binding, polyadenylation and translocation. Collectively, these data allow us to put together a comprehensive model of the structure and function of the polyadenylation ternary complex consisting of VP39, VP55 and RNA. ^
Resumo:
As the major anionic phospholipids predominantly found in the mitochondrial inner membrane of eukaryotic cells, cardiolipin (CL) and its precursor phosphatidylglycerol (PG) are of great importance in many critical mitochondrial processes. Pgs1Δ cells of Saccharomyces cerevisiae lacking both PG and CL display severe mitochondrial defects. Translation of several proteins including products of four mitochondrial DNA (mtDNA) encoded genes (COX1, COX2, COX3, and COB ) and one nuclear-encoded gene (COX4) is inhibited. The molecular basis of this phenotype was analyzed using a combined biochemical, molecular and genetic approach. ^ Using a mitochondrial targeted green fluorescence protein (mtGFP) fused to the COX4 promoter and its 5′ and 3′ untranslated regions (UTRs), lack of mtGFP expression independent of carbon source and strain background was confirmed to be at the translational level. The translational defect was not due to deficiency of mitochondrial respiratory function but rather caused directly by the lack of PG/CL in the mitochondrial membrane. Re-introduction of a functional PGS1 gene restored PG synthesis and expression of the above mtGFP. Deletional analysis of the 5′ UTR of COX4 mRNA revealed the presence of a 50 nt sequence as a cis-acting element inhibiting COX4 translation. Using similar constructs with HIS3 and lacZ as reporter genes, extragenic spontaneous mutations that allowed expression of His3p and β-galactosidase were isolated, which appeared to be recessive and derived from loss-of-function mutations as determined by mating analysis. Using a tetracycline repressible plasmid-borne PGS1 expression system and an in vivo mitochondrial protein translation method, the translation of mtDNA encoded COX1 and COX3 mRNAs was shown to be significantly inhibited in parallel with reduced levels of PG/CL content. Therefore, the cytoplasmic translation machinery appears to be able to sense the level of PG/CL in mitochondria and regulate COX4 translation coordinately with the mtDNA encoded subunits. ^ The essential requirement of PG and CL in mitochondrial function was further demonstrated in the study of CL synthesis by factors affecting mitochondrial biogenesis such as carbon source, growth phase or mitochondrial mutations at the level of transcription. We have also demonstrated that CL synthesis is dependent on the level of PG and INO2/INO4 regulatory genes. ^
Resumo:
Mitochondria are actively engaged in the production of cellular energy sources, generation of reactive oxygen species (ROS), and regulation of apoptosis. Mitochondrial DNA (mtDNA) mutations/deletions and other mitochondrial abnormalities have been implicated in many diseases, especially cancer. Despite this, the roles that these defects play in cancer development, drug sensitivity, and disease progression still remain to be elucidated. The major objective of this investigation was to evaluate the mechanistic relationship between mitochondrial defects and alterations in free radical generation and chemosensitivity in primary chronic lymphocytic leukemia (CLL) cells. This study revealed that the mtDNA mutation frequency and basal superoxide generation are both significantly higher in primary cells from CLL patients with a history of chemotherapy as compared to cells from their untreated counterparts. CLL cells from refractory patients tended to have high mutation frequencies. The data suggest that chemotherapy with DNA-damaging agents may cause mtDNA mutations, which are associated with increased ROS generation and reduced drug sensitivity. Subsequent analyses demonstrated that CLL cells contain significantly more mitochondria than normal lymphocytes. This abnormal accumulation of mitochondria was linked to increased expression of nuclear respiratory factor-1 and mitochondrial transcription factor A, two key free radical-regulated mitochondrial biogenesis factors. Further analysis showed that mitochondrial content may have therapeutic implications since patient cells with high mitochondrial mass display significantly reduced in vitro sensitivity to fludarabine, a frontline agent in CLL therapy. The reduced in vitro and in vivo sensitivity to fludarabine observed in CLL cells with mitochondrial defects highlights the need for novel therapeutic strategies for the treatment of refractory disease. Brefeldin A, an inhibitor of endoplasmic reticulum (ER) to Golgi protein transport that is being developed as an anticancer agent, effectively induces apoptosis in fludarabine-refractory CLL cells through a secretory stress-mediated mechanism involving intracellular sequestration of pro-survival secretory factors. Taken together, these data indicate that mitochondrial defects in CLL cells are associated with alterations in free radical generation, mitochondrial biogenesis activity, and chemosensitivity. Abrogation of survival signaling by blocking ER to Golgi protein transport may be a promising therapeutic strategy for the treatment of CLL patients that respond poorly to conventional chemotherapy. ^
Resumo:
The baker's yeast, Saccharomyces cerevisiae responds to the cytotoxic effects of elevated temperature (37-42°C) by activating transcription of ∼150 genes, termed heat shock genes, collectively required to compensate for the abundance of misfolded and aggregated proteins and various physiological modifications necessary for the cell to survive and grow at heat shock temperatures. An intriguing facet of the yeast heat shock response is the remarkable similarity it shares with the global remodeling that occurs in mammalian cells in response to numerous pathophysiological conditions including cancer and cardiovascular disease and thus provides an ideal model system. I have therefore investigated several novel features of stress signaling, transcriptional regulation, and physiology. Initial work focused on the characterization of SYM1, a novel heat shock gene in yeast which was demonstrated to be required for growth on the nonfermentable carbon source ethanol at elevated temperature, and to be the functional ortholog of the mammalian kidney disease gene, Mpv17. Additional work addressed the role of two proteins, the Akt-related kinase, Sch9, and Sse1, the yeast Hsp110 protein chaperone homolog, in signaling by protein kinase A, establishing Sse1 as a critical negative regulator of this pathway. Furthermore, I have demonstrated a role for Sse1 in biogenesis and stability of the stress-response transcription factor, Msn2; a finding that has been extended to include a select subset of additional high molecular weight proteins, suggesting a more global role for this chaperone in stabilizing the cellular proteome. The final emphasis of my doctoral work has included the finding that celastrol, a compound isolated from the plant family Celasfraceae, a component of traditional Chinese herbal medicine, can activate heat shock transcription factor (Hsf1) in yeast and mammalian cells through an oxidative stress mechanism. Celastrol treatment simultaneously activates both heat shock and oxidative stress response pathways, resulting in increased cytoprotection. ^
Resumo:
The interaction between C. albicans and innate immune cells is a key determinant to disease progression. Transcriptional profiling showed that C. albicans responds to macrophage phagocytosis by inducing pathways required for alternative carbon metabolism (beta-oxidation, the glyoxylate cycle, and gluconeogenesis), suggesting these pathways are important for virulence of C. albicans. ^ We have shown that deleting key genes (FOX2, FBP1) in these pathways results in virulence defects in an in vivo mouse model for systemic infection. Like icl1Δ/Δ mutants, fbp1Δ/Δ mutants are severely attenuated and fox2Δ/Δ mutants are mildly but significantly attenuated, indicating that carbon starvation is a relevant stress in vivo. ^ However, fox2Δ/Δ mutants also had unexpected phenotypes on certain carbon sources, unlike the case in Saccharomyces cerevisiae, suggesting these pathways are regulated differently in C. albicans. To test this, we identified the C. albicans regulators of these pathways based on those from S. cerevisiae and Aspergillus nidulans. ^ C. albicans has a partly conserved framework, but lacks two regulators (Oaf1p, Pip2p) controlling peroxisome biogenesis and beta-oxidation genes in yeast. Instead, C. albicans has a homolog, CTF1, of the A. nidulans fatty acid catabolism regulators FarA and FarB. We have shown that CTF1 is needed for growth on oleate (like FarA and FarB), expression of beta-oxidation and glyoxylate cycle genes, and full virulence. No function for CTF1 has previously been identified in C. albicans. Our data demonstrate a role for alternative carbon metabolism in the virulence of C. albicans and suggest that the regulation of these pathways is a mixture of the filamentous fungi and budding yeast systems. ^
Resumo:
Lung cancer is the leading cause of cancer-related mortality in the US. Emerging evidence has shown that host genetic factors can interact with environmental exposures to influence patient susceptibility to the diseases as well as clinical outcomes, such as survival and recurrence. We aimed to identify genetic prognostic markers for non-small cell lung cancer (NSCLC), a major (85%) subtype of lung cancer, and also in other subgroups. With the fast evolution of genotyping technology, genetic association studies have went through candidate gene approach, to pathway-based approach, to the genome wide association study (GWAS). Even in the era of GWAS, pathway-based approach has its own advantages on studying cancer clinical outcomes: it is cost-effective, requiring a smaller sample size than GWAS easier to identify a validation population and explore gene-gene interactions. In the current study, we adopted pathway-based approach focusing on two critical pathways - miRNA and inflammation pathways. MicroRNAs (miRNA) post-transcriptionally regulate around 30% of human genes. Polymorphisms within miRNA processing pathways and binding sites may influence patients’ prognosis through altered gene regulation. Inflammation plays an important role in cancer initiation and progression, and also has shown to impact patients’ clinical outcomes. We first evaluated 240 single nucleotide polymorphisms (SNPs) in miRNA biogenesis genes and predicted binding sites in NSCLC patients to determine associations with clinical outcomes in early-stage (stage I and II) and late-stage (stage III and IV) lung cancer patients, respectively. First, in 535 early-stage patients, after correcting multiple comparisons, FZD4:rs713065 (hazard ratio [HR]:0.46, 95% confidence interval [CI]:0.32-0.65) showed a significant inverse association with survival in early stage surgery-only patients. SP1:rs17695156 (HR:2.22, 95% CI:1.44-3.41) and DROSHA:rs6886834 (HR:6.38, 95% CI:2.49-16.31) conferred increased risk of progression in the all patients and surgery-only populations, respectively. FAS:rs2234978 was significantly associated with improved survival in all patients (HR:0.59, 95% CI:0.44-0.77) and in the surgery plus chemotherapy populations (HR:0.19, 95% CI:0.07-0.46).. Functional genomics analysis demonstrated that this variant creates a miR-651 binding site resulting in altered miRNA regulation of FAS, providing biological plausibility for the observed association. We then analyzed these associations in 598 late-stage patients. After multiple comparison corrections, no SNPs remained significant in the late stage group, while the top SNP NAT1:rs15561 (HR=1.98, 96%CI=1.32-2.94) conferred a significantly increased risk of death in the chemotherapy subgroup. To test the hypothesis that genetic variants in the inflammation-related pathways may be associated with survival in NSCLC patients, we first conducted a three-stage study. In the discovery phase, we investigated a comprehensive panel of 11,930 inflammation-related SNPs in three independent lung cancer populations. A missense SNP (rs2071554) in HLA-DOB was significantly associated with poor survival in the discovery population (HR: 1.46, 95% CI: 1.02-2.09), internal validation population (HR: 1.51, 95% CI: 1.02-2.25), and external validation (HR: 1.52, 95% CI: 1.01-2.29) population. Rs2900420 in KLRK1 was significantly associated with a reduced risk for death in the discovery (HR: 0.76, 95% CI: 0.60-0.96) and internal validation (HR: 0.77, 95% CI: 0.61-0.99) populations, and the association reached borderline significance in the external validation population (HR: 0.80, 95% CI: 0.63-1.02). We also evaluated these inflammation-related SNPs in NSCLC patients in never smokers. Lung cancer in never smokers has been increasingly recognized as distinct disease from that in ever-smokers. A two-stage study was performed using a discovery population from MD Anderson (411 patients) and a validation population from Mayo Clinic (311 patients). Three SNPs (IL17RA:rs879576, BMP8A:rs698141, and STK:rs290229) that were significantly associated with survival were validated (pCD74:rs1056400 and CD38:rs10805347) were borderline significant (p=0.08) in the Mayo Clinic population. In the combined analysis, IL17RA:rs879576 resulted in a 40% reduction in the risk for death (p=4.1 × 10-5 [p=0.61, heterogeneity test]). We also validated a survival tree created in MD Anderson population in the Mayo Clinic population. In conclusion, our results provided strong evidence that genetic variations in specific pathways that examined (miRNA and inflammation pathways) influenced clinical outcomes in NSCLC patients, and with further functional studies, the novel loci have potential to be translated into clinical use.
Resumo:
Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates c-Myc-induced metabolic target genes expression. Therefore, 14-3-3σ remarkably blocks glycolysis, decreases glutaminolysis and diminishes mitochondrial mass of cancer cells both in vitro and in vivo, thereby severely suppressing cancer bioenergetics and metabolism. As a result, a high level of 14-3-3σ in tumors is strongly associated with increased breast cancer patients’ overall and metastasis-free survival as well as better clinical outcomes. Thus, this study reveals a new role for 14-3-3s as a significant regulator of cancer bioenergetics and a promising target for the development of anti-cancer metabolism therapies.