4 resultados para BAROREFLEX CARDIAC COMPONENT

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

PDGFR is an important target for novel anticancer therapeutics because it is overexpressed in a wide variety of malignancies. Recently, however, several anticancer drugs that inhibit PDGFR signaling have been associated with clinical heart failure. Understanding this effect of PDGFR inhibitors has been difficult because the role of PDGFR signaling in the heart remains largely unexplored. As described herein, we have found that PDGFR-beta expression and activation increase dramatically in the hearts of mice exposed to load-induced cardiac stress. In mice in which Pdgfrb was knocked out in the heart in development or in adulthood, exposure to load-induced stress resulted in cardiac dysfunction and heart failure. Mechanistically, we showed that cardiomyocyte PDGFR-beta signaling plays a vital role in stress-induced cardiac angiogenesis. Specifically, we demonstrated that cardiomyocyte PDGFR-beta was an essential upstream regulator of the stress-induced paracrine angiogenic capacity (the angiogenic potential) of cardiomyocytes. These results demonstrate that cardiomyocyte PDGFR-beta is a regulator of the compensatory cardiac response to pressure overload-induced stress. Furthermore, our findings may provide insights into the mechanism of cardiotoxicity due to anticancer PDGFR inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The "lipotoxic footprint" of cardiac maladaptation in diet-induced obesity is poorly defined. We investigated how manipulation of dietary lipid and carbohydrate influenced potential lipotoxic species in the failing heart. In Wistar rats, contractile dysfunction develops at 48 weeks on a high-fat/high-carbohydrate "Western" diet, but not on low-fat/high-carbohydrate or high-fat diets. Cardiac content of the lipotoxic candidates--diacylglycerol, ceramide, lipid peroxide, and long-chain acyl-CoA species--was measured at different time points by high-performance liquid chromatography and biochemical assays, as was lipogenic capacity in the heart and liver by qRT-PCR and radiometric assays. Changes in membranes fluidity were also monitored using fluorescence polarization. We report that Western feeding induced a 40% decrease in myocardial palmitoleoyl-CoA content and a similar decrease in the unsaturated-to-saturated fatty acid ratio. These changes were associated with impaired cardiac mitochondrial membrane fluidity. At the same time, hepatic lipogenic capacity was increased in animals fed Western diet (+270% fatty acid elongase activity compared with high-fat diet), while fatty acid desaturase activity decreased over time. Our findings suggest that dysregulation of lipogenesis is a significant component of heart failure in diet-induced obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac glycoside compounds have traditionally been used to treat congestive heart failure. Recently, reports have suggested that cardiac glycosides may also be useful for treatment of malignant disease. Our research with oleandrin, a cardiac glycoside component of Nerium oleander, has shown it to be a potent inducer of human but not murine tumor cell apoptosis. Determinants of tumor sensitivity to cardiac glycosides were therefore studied in order to understand the species selective cytotoxic effects as well as explore differential sensitivity amongst a variety of human tumor cell lines. ^ An initial model system involved a comparison of human (BRO) to murine (B16) melanoma cells. Human BRO cells were found to express both the sensitive α3 as well as the less sensitive α1 isoform subunits of Na+,K +-ATPase while mouse B16 cells expressed only the α1 isoform. Drug uptake and inhibition of Na+,K+-ATPase activity were also different between BRO and B16 cells. Partially purified human Na+,K+-ATPase enzyme was inhibited by cardiac glycosides at a concentration that was 1000-fold less than that required to inhibit mouse B16 enzyme to the same extent. In addition, uptake of oleandrin and ouabain was 3–4 fold greater in human than murine cells. These data indicate that differential expression of Na+,K+-ATPase isoform composition in BRO and B16 cells as well as drug uptake and total enzyme activity may all be important determinants of tumor cell sensitivity to cardiac glycosides. ^ In a second model system, two in vitro cell culture model systems were investigated. The first consisted of HFU251 (low expression of Na+,K+-ATPase) and U251 (high Na+ ,K+-ATPase expression) cell lines. Also investigated were human BRO cells that had undergone stable transfection with the α1 subunit resulting in an increase in total Na+,K+-ATPase expression. Data derived from these model systems have indicated that increased expression of Na+,K+-ATPase is associated with an increased resistance to cardiac glycosides. Over-expression of Na +,K+-ATPase in tumor cells resulted in an increase of total Na+,K+-ATPase activity and, in turn, a decreased inhibition of Na+,K+-ATPase activity by cardiac glycosides. However, of interest was the observation that increased enzyme expression was also associated with an elevated basal level of glutathione (GSH) within cells. Both increased Na+,K+-ATPase activity and elevated GSH content appear to contribute to a delayed as well as diminished release of cytochrome c and caspase activation. In addition, we have noted an increased colony forming ability in cells with a high level of Na+,K+-ATPase expression. This suggests that Na+,K+-ATPase is actively involved in tumor cell growth and survival. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epithelial-mesenchymal tissue interactions regulate the development of derivatives of the caudal pharyngeal arches (PAs) to govern the ultimate morphogenesis of the aortic arch and outflow tract (OFT) of the heart. Disruption of these signaling pathways is thought to contribute to the pathology of a significant proportion of congenital cardiovascular defects in humans. In this study, I tested whether Fibroblast Growth Factor 15 (Fgf15), a secreted signaling molecule expressed within the PAs, is an extracellular mediator of tissue interactions during PA and OFT development. Analyses of Fgf15−/− mouse embryonic hearts revealed abnormalities primarily localized to the OFT, correlating with aberrant cardiac neural crest cell behavior. The T-box-containing transcription factor Tbx1 has been implicated in the cardiovascular defects associated with the human 22q11 Deletion Syndromes, and regulates the expression of other Fgf family members within the mouse PAs. However, expression and genetic interaction studies incorporating mice deficient for Tbx1, its upstream regulator, Sonic Hedgehog (Shh), or its putative downstream effector, Fgf8, indicated that Fgf15 functions during OFT development in a manner independent of these factors. Rather, analyses of compound mutant mice indicated that Fgf15 and Fgf9, an additional Fgf family member expressed within the PAs, genetically interact, providing insight into the factors acting in conjunction with Fgf15 during OFT development. Finally, in an effort to further characterize this Fgf15-mediated developmental pathway, promoter deletion analyses were employed to isolate a 415bp sequence 7.1Kb 5′ to the Fgf15 transcription start site both necessary and sufficient to drive reporter gene expression within the epithelium of the PAs. Sequence comparisons among multiple mammalian species facilitated the identification of evolutionarily conserved potential trans-acting factor binding sites within this fragment. Subsequent studies will investigate the molecular pathway(s) through which Fgf15 functions via identification of factors that bind to this element to govern Fgf15 gene expression. Furthermore, targeted deletion of this element will establish the developmental requirement for pharyngeal epithelium-derived Fgf15 signaling function. Taken as a whole, these data demonstrate that Fgf15 is a component of a novel, Tbx1-independent molecular pathway, functioning within the PAs in a manner cooperative with Fgf9, required for proper development of the cardiac OFT. ^