3 resultados para Axillary Dissection
em DigitalCommons@The Texas Medical Center
Resumo:
Contraction of vertebrate cardiac muscle is regulated by the binding of Ca$\sp{2+}$ to the troponin C (cTnC) subunit of the troponin complex. In this study, we have used site-directed mutagenesis and a variety of assay techniques to explore the functional roles of regions in cTnC, including Ca$\sp{2+}$/Mg$\sp{2+}$-binding sites III and IV, the functionally inactive site I, the N-terminal helix, the N-terminal hydrophobic pocket and the two cysteine residues with regard to their ability to form disulfide bonds. Conversion of the first Ca$\sp{2+}$ ligand from Asp to Ala inactivated sites III and IV and decreased the apparent affinity of cTnC for the thin filament. Conversion of the second ligand from Asn to Ala also inactivated these sites in the free protein but Ca$\sp{2+}$-binding was recovered upon association with troponin I and troponin T. The Ca$\sp{2+}$-concentrations required for tight thin filament-binding by proteins containing second-ligand mutations were significantly greater than that required for the wild-type protein. Mutation of site I such that the primary sequence was that of an active site with the first Ca$\sp{2+}$ ligand changed from Asp to Ala resulted in a 70% decrease in maximal Ca$\sp{2\sp+}$ dependent ATPase activity in both cardiac and fast skeletal myofibrils. Thus, the primary sequence of the inactive site I in cTnC is functionally important. Major changes in the sequence of the N-terminus had little effect on the ability of cTnC to recover maximal activity but deletion of the first nine residues resulted in a 60 to 80% decrease in maximal activity with only a minor decrease in the pCa$\sb{50}$ of activation, suggesting that the N-terminal helix must be present but that a specific sequence is not required. The formation of an inter- or intramolecular disulfide bonds caused the exposure of hydrophobic surfaces on cTnC and rendered the protein Ca$\sp{2+}$ independent. Finally, elution patterns from a hydrophobic interactions column suggest that cTnC undergoes a significant change in hydrophobicity upon Ca$\sp{2+}$ binding, the majority of which is caused by site II. These latter data show an interesting correlation between exposure of hydrophobic surfaces on and activation of cTnC. Overall, these results represent significant progress toward the elucidation of the functional roles of a variety of structural regions in cTnC. ^
Resumo:
Background: The impact of anesthetic techniques for breast cancer surgery traditionally has been centered on the incidence of acute pain syndromes and complications immediately after surgery. Evaluating anesthesia management beyond short-term effects is an emerging science. Several animal studies have concluded that regional anesthesia independently reduces cancer recurrence and metastasis. A small number of retrospective clinical studies indicate that reductions in cancer recurrence are attributable to anesthesia technique; however, individual risk factors need to be taken into consideration. ^ Purpose: The aims were to: 1) investigate differences in patient, disease and treatment factors between women who received surgical treatment for breast cancer with paravertebral regional and general anesthesia compared to women who received general anesthesia alone; 2) explore patient, disease and treatment factors associated with recurrence of breast cancer; and 3) test the association between type of anesthesia and breast cancer recurrence and survival over 22–46 months following surgery. ^ Methods: This retrospective cohort study included 358 patients with stage 0-III disease who received a partial or total mastectomy without axillary node dissection between October 2006 and October 2008 at a large academic cancer center. Follow-up ended in August 2010 with a median follow-up time of 28.8 months. ^ Results: The patient demographics were equally represented across anesthesia groups. Mean BMI (kg/m2) was greater for the patients who received general anesthesia (GA) alone (29±6.8) compared to those that received paravertebral regional block (PVB) with GA (28±5.1), p=0.001. The PVB with GA group had more advanced stages of disease (p=0.01) and longer surgeries (p=0.01) than the GA only group. Breast cancer recurrence was detected in only 1.7% of the study population. The mean age was 51±18 in those who had a recurrence compared to 58±11 in the non-recurrent group (p=0.06). Overall, no association between anesthesia type and recurrence was found (p=0.53), with an unadjusted estimated hazard ratio of 1.84 (95% CI 0.34–10.08). ^ Conclusions: In contrast to previous retrospective studies in cancer patients receiving surgical and anesthesia treatment, this study was unable to detect a difference in relating type of anesthesia with decreased breast cancer recurrence. Nonetheless, a significant association between BMI and type of anesthesia was observed and should be taken into account in future studies. Because the overall rate of recurrence was very small in this population, a larger study would be needed to detect any differences in rates of recurrence attributable to type of anesthesia. ^
Resumo:
Human peripheral blood lymphocytes (PBL) cultured for varying lengths of time in IL-2 are able to mediate antibody independent cellular cytotoxicity (AICC) as well as antibody dependent cellular cytotoxicity (ADCC) against a wide range of tumor targets. The objective of our study is to determine the cytotoxic potential of the subset of LAK cells involved in ADCC, the tumor recognition mechanism in ADCC, the kinetics of ADCC mediated by PBL cultured under various conditions and the role of TNF-$\alpha$ in the development and maturation of ADCC effectors in the LAK population.^ The model system in this study for ADCC used a monoclonal antibody 14G2a (IgG2a), that recognizes the GD2 epitope on human melanoma cell line, SK-Mel-1. The target recognition mechanism operative in AICC (traditionally known as lymphokine activated killing or LAK) is an acquired property of these IL-2 activated cells which confers on them the unique ability to distinguish between tumor and normal cells. This recognition probably involves the presence of a trypsin sensitive N-linked glycoprotein epitope on tumor cells. Proteolytic treatment of the tumor cells with trypsin renders them resistant to AICC by PBL cultured in IL-2. However, ADCC is unaffected. This ADCC, mediated by the relatively small population of cells that are positive for the Fc receptor for IgG (FcR), is an indication that this subset of "LAK" cells does not require the trypsin sensitive epitope on tumor cells to mediate killing. Enriching PBL for FcR+ cells markedly enhanced both AICC and ADCC and also reduced the IL-2 requirement of these cells.^ The stoichiometry of Fc receptor (FcR) expression on the cytotoxic effectors does not correlate with ADCC lytic activity. Although FcRs are necessary to mediate ADCC, other factors, appear to regulate the magnitude of cytolytic activity. In order to investigate these putative factors, the kinetics of ADCC development was studied under various conditions (in IL-2 (10u/ml) and 100u/ml), in IL-2(10u/ml) + TNF$\alpha$ (500u/ml) and in TNF-$\alpha$ (500u/ml) alone). Addition of exogenous TNF-$\alpha$ into the four hour cytotoxicity assay did not increase ADCC, nor did anti-TNF antibodies result in inhibition. On the other hand, addition of anti-TNF antibodies to PBL and IL-2 for 24 hours, resulted in a marked inhibition of the ADCC, suggesting that endogenous TNF-$\alpha$ is obligatory for the maturation and differentiation of ADCC effectors. ^