5 resultados para Autocorrelation (Statistics)
em DigitalCommons@The Texas Medical Center
Resumo:
Administration of gonadotropins or testosterone (T) will maintain qualitatively normal spermatogenesis and fertility in hypophysectomized (APX) rats. However, quantitative maintenance of the spermatogenic process in APX rats treated with T alone or in combination with follicle stimulating hormone (FSH) has not been demonstrated. Studies reported here were conducted to determine whether it would be possible to increase intratesticular testosterone (ITT) levels in APX rats to those found in normal animals by administration of appropriate amounts of testosterone propionate (TP) and if under these conditions spermatogenesis can be maintained quantitatively. Quantitative analysis of spermatogenesis was performed on stages VI and VII of the spermatogenic cycle utilizing criteria of Leblond and Clermont (1952) all cell types were enumerated. In a series of experiments designed to investigate the effects of T on spermatogenesis, TP was administered to 60 day old APX rats twice daily for 30 days in doses ranging from 0.6 to 15 mg/day or from 0.6 to 6.0 mg/day in combination with FSH. The results of this study demonstrate that the efficiency of transformation of type A to type B spermatogonia and the efficacy of the meiotic prophase are related to ITT levels, and that quantitatively normal completion of the reduction division requires normal ITT levels. The ratio of spermatids to spermatocytes in the vehicle-treated APX rats was 1:1.38; in the APX rats treated with 15 mg of TP it was 1:4.0 (the theoretically expected number). This study is probably the first to demonstrate: (1) the pharmacokinetics of TP, (2) the profile and quantity of T-immunoactivity in both serum and testicular tissue of APX and IC rats as well as APX rats treated with TP alone or in combination with FSH, (3) the direct correlation of serum T and ITT levels in treated APX rats (r = 0.9, p < 0.001) as well as in the IC rats (r = 0.9, p < 0.001), (4) the significant increase in the number of Type B spermatogonia, preleptotene and pachytene spermatocytes and round spermatids in TP-treated APX rats, (5) the correlation of the number of round spermatids formed in IC rats to ITT levels (r = 0.9, p < 0.001), and (6) the correlation of the quantitative maintenance of spermatogenesis with ITT levels (r = 0.7, p < 0.001) in the testes of TP-treated APX rats. These results provide direct experimental evidence for the key role of T in the spermatogenic process. ^
Resumo:
Objectives. This paper seeks to assess the effect on statistical power of regression model misspecification in a variety of situations. ^ Methods and results. The effect of misspecification in regression can be approximated by evaluating the correlation between the correct specification and the misspecification of the outcome variable (Harris 2010).In this paper, three misspecified models (linear, categorical and fractional polynomial) were considered. In the first section, the mathematical method of calculating the correlation between correct and misspecified models with simple mathematical forms was derived and demonstrated. In the second section, data from the National Health and Nutrition Examination Survey (NHANES 2007-2008) were used to examine such correlations. Our study shows that comparing to linear or categorical models, the fractional polynomial models, with the higher correlations, provided a better approximation of the true relationship, which was illustrated by LOESS regression. In the third section, we present the results of simulation studies that demonstrate overall misspecification in regression can produce marked decreases in power with small sample sizes. However, the categorical model had greatest power, ranging from 0.877 to 0.936 depending on sample size and outcome variable used. The power of fractional polynomial model was close to that of linear model, which ranged from 0.69 to 0.83, and appeared to be affected by the increased degrees of freedom of this model.^ Conclusion. Correlations between alternative model specifications can be used to provide a good approximation of the effect on statistical power of misspecification when the sample size is large. When model specifications have known simple mathematical forms, such correlations can be calculated mathematically. Actual public health data from NHANES 2007-2008 were used as examples to demonstrate the situations with unknown or complex correct model specification. Simulation of power for misspecified models confirmed the results based on correlation methods but also illustrated the effect of model degrees of freedom on power.^
Resumo:
A population based ecological study was conducted to identify areas with a high number of TB and HIV new diagnoses in Harris County, Texas from 2009 through 2010 by applying Geographic Information Systems to determine whether distinguished spatial patterns exist at the census tract level through the use of exploratory mapping. As of 2010, Texas has the fourth highest occurrence of new diagnoses of HIV/AIDS and TB.[31] The Texas Department of State Health Services (DSHS) has identified HIV infected persons as a high risk population for TB in Harris County.[29] In order to explore this relationship further, GIS was utilized to identify spatial trends. ^ The specific aims were to map TB and HIV new diagnoses rates and spatially identify hotspots and high value clusters at the census tract level. The potential association between HIV and TB was analyzed using spatial autocorrelation and linear regression analysis. The spatial statistics used were ArcGIS 9.3 Hotspot Analysis and Cluster and Outlier Analysis. Spatial autocorrelation was determined through Global Moran's I and linear regression analysis. ^ Hotspots and clusters of TB and HIV are located within the same spatial areas of Harris County. The areas with high value clusters and hotspots for each infection are located within the central downtown area of the city of Houston. There is an additional hotspot area of TB located directly north of I-10 and a hotspot area of HIV northeast of Interstate 610. ^ The Moran's I Index of 0.17 (Z score = 3.6 standard deviations, p-value = 0.01) suggests that TB is statistically clustered with a less than 1% chance that this pattern is due to random chance. However, there were a high number of features with no neighbors which may invalidate the statistical properties of the test. Linear regression analysis indicated that HIV new diagnoses rates (β=−0.006, SE=0.147, p=0.970) and census tracts (β=0.000, SE=0.000, p=0.866) were not significant predictors of TB new diagnoses rates. ^ Mapping products indicate that census tracts with overlapping hotspots and high value clusters of TB and HIV should be a targeted focus for prevention efforts, most particularly within central Harris County. While the statistical association was not confirmed, evidence suggests that there is a relationship between HIV and TB within this two year period.^