3 resultados para Atoms in molecules

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A growing number of studies show strong associations between stress and altered immune function. In vivo studies of chronic and acute stress have demonstrated that cognitive stressors are strongly correlated with high circulating levels of catecholamines (CT) and corticosteroids (CS) that are associated with changes in type-1/type-2 cytokine expression. Although individual pharmacologic doses of CS and CT can inhibit the expression of T-helper 1 (Th1, type-1 like) and promote the production of T-helper 2 (Th2, type-2 like) cytokines in antigen-specific and mitogen stimulated human leukocyte cultures in vitro, little attention has been focused on the effects of combination physiologic-stress doses of CT and CS that may be more physiologically relevant. In addition, both in-vivo and in-vitro studies suggest that the differential expression of the B7 family of costimulatory molecules CD80 and CD86 may promote the expression of type-1 or type-2 cytokines, respectively. Furthermore, corticosteroids can influence the expression of β2-adrenergic receptors in various human tissues. We therefore investigated the combined effects of physiologic-stress doses of in vitro CT and CS upon the type-1/type-2 cytokine balance and expression of B7 costimulatory molecules of human peripheral blood mononuclear cells (PBMC) as a model to study the immunomodulatory effects of physiologic stress. Results demonstrated a significant decrease in type-1 cytokine expression and a significant increase in type-2 cytokine production in our CS+CT incubated cultures when compared to either CT or CS agents alone. In addition, we demonstrated the differential expression of CD80/CD86 in favor of CD86 at the cellular and population level as determined by flow cytometry in lipopolysaccharide stimulated human Monocytes. Furthermore, we developed flow cytometry based assays to detect total β2AR in human CD4+ T-lymphocytes that demonstrated decreased expression of β2AR in mitogen stimulated CD4+ T-lymphocytes in the presence of physiologic stress levels of CS and CT as single in vitro agents, however, when both CS and CT were combined, significantly higher expression of β2AR was observed. In summary, our in vitro data suggest that both CS and CT work cooperatively to shift immunity towards type-2 responses. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The presentation of MHC class I (MHC-I)/peptide complexes by dendritic cells (DCs) is critical for the maintenance of central tolerance to self and for the regulation of cytotoxic T lymphocytes (CTL)-mediated adaptive immune responses against pathogens and cancer cells. Interestingly, several findings have suggested that the cytoplasmic tail of MHC class I plays a functional role in the regulation of CTL immune responses. For example, our previous studies demonstrated that exon 7-deleted MHC-I molecules not only showed extended DC cell surface half-lives but also induced significantly increased CTL responses to viral challange invivo. Although exon 7-deleted variant of MHC-I does not occur naturally in humans, the animal studies prompted us to examine whether exon 7-deleted MHC-I molecules could generate augmented CTL responses in a therapeutic DC-based vaccine setting. To examine the stimulatory capacity of exon 7-deleted MHC-I molecules, we generated a lentivirus-mediated gene transfer system to induce the expression of different MHC-I cytoplasmic tail isoforms in both mouse and human DCs. These DCs were then used as vaccines in a melanoma mouse tumor model and in a human invitro co-culture system. In this thesis, we show that DCs expressing exon 7-deleted MHC-I molecules, stimulated remarkably higher levels of T-cell cytokine production and significantly increased the proliferation of meanoma-specific (Pmel-1) T cells compared with DCs expressing wild type MHC-I. We also demonstrate that, in combination with adoptive transfer of Pmel-1 T-cell, DCs expressing exon 7-deleted Db molecules induced greater anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival as compared to DCs expressing wild-type Db molecules. Moreover, we also observed that human DCs expressing exon 7-deleted HLA-A2 molecules showed similarly augmented CTL stimulatory ability. Mechanistic studies suggest that exon 7-deleted MHC-I molecules showed impaired lateral membrane movement and extended cell surface half-lives within the DC/T-cell interface, leading to increased spatial availability of MHC-I/peptide complexes for recognition by CD8+ T cells. Collectively, these results suggesr that targeting exon 7 within the cytoplasmic tail of MHC-I molecules in DC vaccines has the potential to enhance CD8+ T cell stimulatory capacity and improve clinical outcomes in patients with cancer or viral infections.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deregulation of apoptotic cell death can result in aberrant accumulation of cells and increased tumor incidence. Fas (CD95) and Fas ligand (FasL) are a receptor-ligand pair whose activation induces apoptosis in many cell types. Previously, we demonstrated that low metastatic, Fas+ K1735-P murine melanoma cells spontaneously metastasize to the lung following orthotopic injection into FasL-deficient (gld) mice compared to wild-type (wt) controls. We further demonstrated that the expression of the Fas antagonist soluble Fas (sFas) directly correlates with disease stage in patients with melanoma, breast, and colon cancer. These findings document a role for host-derived FasL, in the control of metastatic disease and suggest a role for tumor-associated sFas in acquiring metastatic potential. To directly test whether FasL expressed on lymphocytes or on lung stromal cells restricts metastasis, bone marrow chimeras were generated between C3H wt and C3H gld mice. Chimeric animals were injected subcutaneously with 5 × 105 K1735-P and the incidence and number of spontaneous lung metastases scored. The data show that wt mice receiving gld marrow had a greater number of lung metastases (median 9.5, range 2–31) than gld mice reconstituted with wt marrow (median 1, range 0–31; p < 0.016). Interestingly, both groups had fewer metastases compared to gld controls (median 18.5, range 0–46) but more than wt controls (median 2, range 0–7). These observations provide the first evidence that both hematopoietic- and nonhematopoietic-host derived FasL, are important in the control of melanoma metastasis to the lung. To directly test whether tumor-associated sFas expression can enhance metastasis, K1735-P cells were transfected with three isoforms of sFas (Exo4Del, Exo6Del, and Exo3, 4, 6Del). RT-PCR and ELISA analysis confirmed the expression of sFas RNA and protein respectively. Following intravenous injection of 5 × 104 cells, sFas transfected cells formed significantly more experimental lung metastases [Exo6Del clone 3 (median 22, range 0–36), Exo6Del clone 7 (median 31, range 4–50), Exo3, 4, 6Del (median 22.5, range 13–48)] compared to vector control cells (median 6.5, range 3–29). Together, these data provide the first evidence that sFas is sufficient to enhance the metastatic potential of Fas+ melanoma cells. ^