2 resultados para Associative Algebras With Polynomial Identities
em DigitalCommons@The Texas Medical Center
Resumo:
A change in synaptic strength arising from the activation of two neuronal pathways at approximately the same time is a form of associative plasticity and may underlie classical conditioning. Previously, a cellular analog of a classical conditioning protocol has been demonstrated to produce short-term associative plasticity at the connections between sensory and motor neurons in Aplysia. A similar training protocol produced long-term (24 hour) enhancement of excitatory postsynaptic potentials (EPSPs). EPSPs produced by sensory neurons in which activity was paired with a reinforcing stimulus were significantly larger than unpaired controls 24 hours after training. To examined whether the associative plasticity observed at these synapses may be involved in higher-order forms of classical conditioning, a neural analog of contingency was developed. In addition, computer simulations were used to analyze whether the associative plasticity observed in Aplysia could, in theory, account for second-order conditioning and blocking. ^
Resumo:
This study addresses the questions of whether the frequency of generation and in vivo cross-reactivity of highly immunogenic tumor clones induced in a single parental murine fibrosarcoma cell line MCA-F is more closely related to the agent used to induce the Imm$\sp{+}$ clone or whether these characteristics are independent of the agents used. These questions were addressed by treating the parental tumor cell line MCA-F with UV-B radiation (UV-B), 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), or 5-aza-2$\sp\prime$-deoxycytidine (5-azaCdR). The frequency of Imm$\sp{+}$ variant generation was similarly high for the three different agents, suggesting that the frequency of Imm$\sp{+}$ generation was related more closely to the cell line than to the inducing agent used. Cross-reactivity was tested with two Imm$\sp{+}$ clones from each treatment group in a modified immunoprotection assay that selectively engendered antivariant, but not antiparental immunity. Under these conditions each clone, except one, immunized against itself. The MNNG-induced clones engendered stronger antivariant immunity but a weaker variant cross-reactive immunity could also be detected.^ This study also characterized the lymphocyte populations responsible for antivariant and antiparental immunity in vivo. Using the local adoptive transfer assay (LATA) and antibody plus complement depletion of T-cell subsets, we showed that immunity induced by the Imm$\sp{+}$ variants against the parent MCA-F was transferred by the Thy1.2$\sp{+}$, L3T4a$\sp{+}$, Lyt2.1$\sp{-}$ (CD4$\sp{+}$) population, without an apparent contribution by Thy1.2$\sp{+}$, L3T4a$\sp{-}$, Lyt2.1$\sp{+}$ (CD8$\sp{+}$) cells. A role for Lyt2.1$\sp{+}$T lymphocytes in antivariant, but not antiparent immunity was supported by the results of LATA and CTL assays. Immunization with low numbers of viable Imm$\sp{+}$ cells, or with high numbers of non viable Imm$\sp{+}$ cells engendered only antivariant immunity without parental cross-protection. The associative recognition of parental antigens and variant neoantigens resulting in strong antiparent immunity was investigated using somatic cells hybrids of Imm$\sp{+}$ variants of MCA-F and an antigenically distinct tumor MCA-D. An unexpected result of these latter experiments was the expression of a unique tumor-specific antigen by the hybrid cells. These studies demonstrate that the parental tumor-specific antigen and the variant neoantigen must be coexpressed on the cell surface to engender parental cross-protective immunity. (Abstract shortened with permission of author.) ^