18 resultados para Aspartate transaminase
em DigitalCommons@The Texas Medical Center
Resumo:
Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the biochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5'-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5'-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver.
Resumo:
Staphylococcus aureus is an opportunistic bacterial pathogen that can infect humans and other species. It utilizes an arsenal of virulence factors to cause disease, including secreted and cell wall anchored factors. Secreted toxins attack host cells, and pore-forming toxins destroy target cells by causing cell lysis. S. aureus uses cell-surface adhesins to attach to host molecules thereby facilitating host colonization. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are a family of cell-wall anchored proteins that target molecules like fibronectin and fibrinogen. The Serine-aspartate repeat (Sdr) proteins are a subset of staphylococcal MSCRAMMs that share similar domain organization. Interestingly, the amino-terminus, is composed of three immunoglobulin-folded subdomains (N1, N2, and N3) that contain ligand-binding activity. Clumping factors A and B (ClfA and ClfB) and SdrG are Sdr proteins that bind to fibrinogen (Fg), a large, plasma glycoprotein that is activated during the clotting cascade to form fibrin. In addition to recognizing fibrinogen, ClfA and ClfB can bind to other host ligands. Analysis of S. aureus strains that cause osteomyelitis led to the discovery of the bone-sialoprotein-binding protein (Bbp), an Sdr protein. Because several MSCRAMMs target more than one molecule, I hypothesized that Bbp may recognize other host proteins. A ligand screen revealed that the recombinant construct BbpN2N3 specifically recognizes human Fg. Surface plasmon resonance was used to determine the affinity of BbpN2N3 for Fg, and a dissociation constant of 540 nM was determined. Binding experiments performed with recombinant Fg chains were used to map the binding of BbpN2N3 to the Fg Aalpha chain. Additionally, Bbp expressed on the surface of Lactococcus lactis and S. aureus Newman bald mediated attachment of these bacteria to Fg Aalpha. To further characterize the interaction between the two proteins, isothermal titration calorimetry and inhibition assays were conducted with synthetic Fg Aalpha peptides. To determine the physiological implications of Bbp binding to Fg, the effect of Bbp on fibrinogen clotting was studied. Results show that Bbp binding to Fg inhibits the formation of fibrin. The consequences of this interaction are currently under investigation. Together, these data demonstrate that human Fg is a novel ligand for Bbp. This study indicates that the MSCRAMM Bbp may aid in staphylococcal attachment by targeting both an extracellular matrix and a blood plasma protein. The implications of these novel findings are discussed.
Resumo:
In this report we test the hypothesis that long-term virus-induced alterations in CYP occur from changes initiated by the virus that may not be related to the immune response. Enzyme activity, protein expression and mRNA of CYP3A2, a correlate of human CYP3A4, and CYP2C11, responsive to inflammatory mediators, were assessed 0.25, 1, 4, and 14 days after administration of several different recombinant adenoviruses at a dose of 5.7 x 1012 virus particles (vp)/kg to male Sprague Dawley rats. Wild type adenovirus, containing all viral genes, suppressed CYP3A2 and 2C11 activity by 37% and 39%, respectively within six hours. Levels fell to 67% (CYP3A2) and 79% (CYP2C11) of control by 14 days (p
Resumo:
Longitudinal in vivo proton magnetic resonance spectroscopy (1H-MRS) and immunohistochemistry were performed to investigate the tissue degeneration in traumatically injured rat spinal cord rostral and caudal to the lesion epicenter. On 1H-MRS significant decreases in N-acetyl aspartate (NAA) and total creatine (Cr) levels in the rostral, epicenter, and caudal segments were observed by 14 days, and levels remained depressed up to 56 days post-injury (PI). In contrast, the total choline (Cho) levels increased significantly in all three segments by 14 days PI, but recovered in the epicenter and caudal, but not the rostral region, at 56 days PI. Immunohistochemistry demonstrated neuronal cell death in the gray matter, and reactive astrocytes and axonal degeneration in the dorsal, lateral, and ventral white-matter columns. These results suggest delayed tissue degeneration in regions both rostrally and caudally from the epicenter in the injured spinal cord tissue. A rostral-caudal asymmetry in tissue recovery was seen both on MRI-observed hyperintense lesion volume and the Cho, but not NAA and Cr, levels at 56 days PI. These studies suggest that dynamic metabolic changes take place in regions away from the epicenter in injured spinal cord.
Resumo:
BACKGROUND: Synaptic plasticity underlies many aspect of learning memory and development. The properties of synaptic plasticity can change as a function of previous plasticity and previous activation of synapses, a phenomenon called metaplasticity. Synaptic plasticity not only changes the functional connectivity between neurons but in some cases produces a structural change in synaptic spines; a change thought to form a basis for this observed plasticity. Here we examine to what extent structural plasticity of spines can be a cause for metaplasticity. This study is motivated by the observation that structural changes in spines are likely to affect the calcium dynamics in spines. Since calcium dynamics determine the sign and magnitude of synaptic plasticity, it is likely that structural plasticity will alter the properties of synaptic plasticity. METHODOLOGY/PRINCIPAL FINDINGS: In this study we address the question how spine geometry and alterations of N-methyl-D-aspartic acid (NMDA) receptors conductance may affect plasticity. Based on a simplified model of the spine in combination with a calcium-dependent plasticity rule, we demonstrated that after the induction phase of plasticity a shift of the long term potentiation (LTP) or long term depression (LTD) threshold takes place. This induces a refractory period for further LTP induction and promotes depotentiation as observed experimentally. That resembles the BCM metaplasticity rule but specific for the individual synapse. In the second phase, alteration of the NMDA response may bring the synapse to a state such that further synaptic weight alterations are feasible. We show that if the enhancement of the NMDA response is proportional to the area of the post synaptic density (PSD) the plasticity curves most likely return to the initial state. CONCLUSIONS/SIGNIFICANCE: Using simulations of calcium dynamics in synaptic spines, coupled with a biophysically motivated calcium-dependent plasticity rule, we find under what conditions structural plasticity can form the basis of synapse specific metaplasticity.
Resumo:
Lipopolysaccharide (LPS) causes hepatic injury that is mediated, in part, by upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Ketamine has been shown to prevent these effects. Because upregulation of heme oxygenase-1 (HO-1) has hepatoprotective effects, as does carbon monoxide (CO), an end product of the HO-1 catalytic reaction, we examined the effects of HO-1 inhibition on ketamine-induced hepatoprotection and assessed whether CO could attenuate LPS-induced hepatic injury. One group of rats received ketamine (70 mg/kg ip) or saline concurrently with either the HO-1 inhibitor tin protoporphyrin IX (50 micromol/kg ip) or saline. Another group of rats received inhalational CO (250 ppm over 1 h) or room air. All rats were given LPS (20 mg/kg ip) or saline 1 h later and euthanized 5 h after LPS or saline. Liver was collected for iNOS, COX-2, and HO-1 (Western blot), NF-kappaB and PPAR-gamma analysis (EMSA), and iNOS and COX-2 mRNA analysis (RT-PCR). Serum was collected to measure alanine aminotransferase as an index of hepatocellular injury. HO-1 inhibition attenuated ketamine-induced hepatoprotection and downregulation of iNOS and COX-2 protein. CO prevented LPS-induced hepatic injury and upregulation of iNOS and COX-2 proteins. Although CO abolished the ability of LPS to diminish PPAR-gamma activity, it enhanced NF-kappaB activity. These data suggest that the hepatoprotective effects of ketamine are mediated primarily by HO-1 and its end product CO.
Resumo:
Calcium levels in spines play a significant role in determining the sign and magnitude of synaptic plasticity. The magnitude of calcium influx into spines is highly dependent on influx through N-methyl D-aspartate (NMDA) receptors, and therefore depends on the number of postsynaptic NMDA receptors in each spine. We have calculated previously how the number of postsynaptic NMDA receptors determines the mean and variance of calcium transients in the postsynaptic density, and how this alters the shape of plasticity curves. However, the number of postsynaptic NMDA receptors in the postsynaptic density is not well known. Anatomical methods for estimating the number of NMDA receptors produce estimates that are very different than those produced by physiological techniques. The physiological techniques are based on the statistics of synaptic transmission and it is difficult to experimentally estimate their precision. In this paper we use stochastic simulations in order to test the validity of a physiological estimation technique based on failure analysis. We find that the method is likely to underestimate the number of postsynaptic NMDA receptors, explain the source of the error, and re-derive a more precise estimation technique. We also show that the original failure analysis as well as our improved formulas are not robust to small estimation errors in key parameters.
Resumo:
Although gastrointestinal stromal tumor (GIST) is effectively treated with imatinib, there are a number of clinical challenges in the optimal treatment of these patients. The plasma steady-state trough level of imatinib has been proposed to correlate with clinical outcome. Plasma imatinib level may be affected by a number of patient characteristics. Additionally, the ideal plasma trough concentration of imatinib is likely to vary based on the KIT genotype (genotype determines imatinib binding affinity) of the individual patient. Patients’ genotype or plasma imatinib level may influence the type and duration of response that is appreciable by clinical evaluation. The objectives of this study were to determine effects of genotype on the type of response appreciable by current imaging criteria, to determine the distribution of plasma imatinib levels in patients with GIST, to determine factors that correlate with plasma imatinib level, to determine the incremental effects of imatinib dose escalation; and to explore the median plasma levels and outcomes of patients with various KIT mutations. We therefore obtained KIT mutation information and analyzed CT response for size and density measurement of GISTs at baseline and within the first four moths of imatinib treatment. In 126 patients with metastatic/unresectable disease, the KIT genotype of patients’ tumor was significantly associated with unique response characteristics measurable by CT. Furthermore, hepatic and peritoneal metastases differed in their response characteristics. A subgroup of patients with KIT exon 9 mutation, who received higher doses of imatinib and experienced higher trough imatinib levels, experienced improved progression-free survival similar to that of KIT exon 11 patients. Therefore, we have found that imatinib plasma levels were higher in patients with elevated Aspartate amino transferase, were women, were older, or were being treated concomitantly with CYP450 substrate drugs. As expected, CYP450 inducers correlated with a lower plasma imatinib levels in GIST patients. Renal metabolism of imatinib accounts for <10%, so it was not included in the analysis but may affect covariates. Interestingly, there was a trend for low imatinib levels and inferior progression-free survival in patients who had undergone complete gastrectomy. Patients with KIT exon 9 mutation in our cohort received higher imatinib doses, experienced higher trough imatinib levels, and experienced a PFS similar to that of KIT exon 11 patients. In conclusion, imatinib plasma levels are influenced by a number of patient characteristics. The optimal imatinib plasma level for individual patients is not known but is an area of intense investigation. Our study confirms patients with KIT exon 9 mutations benefit from high-dose imatinib and higher trough imatinib levels.
Resumo:
This dissertation presents structural, immunochemical and neurochemical evidence for glutamatergic retinotectal synaptic transmission, augmenting and extending previous physiological and anatomical studies. The evidence is especially striking when the laminar patterns of ($\sp3$H) L-glutamate receptor binding, ($\sp3$H) L-glutamate high affinity uptake (HAU) and glutamate immunoreactivity (GLIR) of the dorsal tectum are compared. All show high activity in the tectal SGFS, with a peak in the most superficial laminae of SGFS followed by dip in the b-c region, and a second broad peak in deeper SGFS. Uptake and immunoreactivity bear a stronger resemblance to one another than either does to receptor binding, consistent with the fact that HAU and GLIR are localized in the same structures: glutamatergic terminals, intrinsic cell bodies and their processes. Receptor binding, as attested by the lack of enucleation effects, is a marker of postsynaptic receptors. In summary, these results are consistent with the hypothesis that most of the retinal projection to the optic tectum is glutamatergic: (1) A glutamate/aspartate HAU system exists in the superficial laminae, and it is dependent upon an intact retinal input, as shown developmentally and by retinal ablation; (2) Glutamate-like immunoreactivity appears in retinorecipient tectal regions (partially responsive to enucleation), in cell bodies of retinal ganglion cells and displaced ganglion cells, and in a non-tectal ganglion cell projection, the ectomammilary nucleus; (3) Sodium-independent glutamate receptor binding (which remains unchanged by enucleation) is most intense in the retinorecipient regions of the tectum and the ectomammilary nucleus. This binding is pharmacologically typical of a CNS sensory structure, being dominated by the quisqualate/kainate receptor subclass. Thus, as with other sensory systems, a portion of the retinotectal projection has been shown to include glutamatergic afferents with the distribution and properties expected of the primary projection ^
Resumo:
Serial quantitative and correlative studies of experimental spinal cord injury (SCI) in rats were conducted using three-dimensional magnetic resonance imaging (MRI). Correlative measures included morphological histopathology, neurobehavioral measures of functional deficit, and biochemical assays for N-acetyl-aspartate (NAA), lactate, pyruvate, and ATP. A spinal cord injury device was characterized and provided a reproducible injury severity. Injuries were moderate and consistent to within $\pm$20% (standard deviation). For MRI, a three-dimensional implementation of the single spin-echo FATE (Fast optimum angle, short TE) pulse sequence was used for rapid acquisition, with a 128 x 128 x 32 (x,y,z) matrix size and a 0.21 x 0.21 x 1.5 mm resolution. These serial studies revealed a bimodal characteristic in the evolution in MRI pathology with time. Early and late phases of SCI pathology were clearly visualized in $T\sb2$-weighted MRI, and these corresponded to specific histopathological changes in the spinal cord. Centralized hypointense MRI regions correlated with evidence of hemorrhagic and necrotic tissue, while surrounding hyperintense regions represented edema or myelomalacia. Unexpectedly, $T\sb2$-weighted MRI pathology contrast at 24 hours after injury appeared to subside before peaking at 72 hours after injury. This change is likely attributable to ongoing secondary injury processes, which may alter local $T\sb2$ values or reduce the natural anisotropy of the spinal cord. MRI, functional, and histological measures all indicated that 72 hours after injury was the temporal maximum for quantitative measures of spinal cord pathology. Thereafter, significant improvement was seen only in neurobehavioral scores. Significant correlations were found between quantitated MRI pathology and histopathology. Also, NAA and lactate levels correlated with behavioral measures of the level of function deficit. Asymmetric (rostral/caudal) changes in NAA and lactate due to injury indicate that rostral and caudal segments from the injury site are affected differently by the injury. These studies indicate that volumetric quantitation of MRI pathology from $T\sb2$-weighted images may play an important role in early prediction of neurologic deficit and spinal cord pathology. The loss of $T\sb2$ contrast at 24 hours suggests MR may be able to detect certain delayed mechanisms of secondary injury which are not resolved by histopathology or other radiological modalities. Furthermore, in vivo proton magnetic resonance spectroscopy (MRS) studies of SCI may provide a valuable addition source of information about changes in regional spinal cord lactate and NAA levels, which are indicative of local metabolic and pathological changes. ^
Resumo:
The gerbil model of ischemia was used to determine the effect of carotid occlusion on energy metabolites in cellular layers of discrete regions of the hippocampus and dentate gyrus. Levels of glucose, glycogen, ATP and phosphocreatine (PCr) were unchanged after 1 minute of ischemia. However, 3 minutes of ischemia produced a dramatic decrease in net levels of all metabolites. No additional decrease was observed after 15 minutes of ischemia. Re-establishment of the blood flow for 5 minutes after a 15 minute ischemic episode returned all metabolites to pre-ischemia levels. Concentrations of glucose and glycogen were elevated in sham-operated animals as a function of the pentobarbital anesthetic employed. In other studies, elevated GABA levels (produced by inhibiting GABA-transaminase with (gamma)-vinyl-GABA (GVG)) were found to decrease the rate of utilization of the high-energy phosphate metabolites ATP and PCr in the mouse cortex. In addition, glucose and glycogen levels were increased. Thus, tonic inhibition by GABA produced decreased cellular activity. Additional experiments demonstrated the attenuation of ischemia-induced metabolite depletion in cellular layers of regions of the hippocampus, dentate gyrus and cortex after GVG administration. Under ether, 1 minute of bilateral carotid occlusion produced a dramatic decrease in metabolite levels. After GVG treatment, the decrease was blocked completely for glucose, glycogen and ATP, and partially for PCr. Therefore, GABA-transaminase inhibition produced increased levels of GABA which subsequently decreased cellular activity. The protection against ischemia may have been due to (a)decreased metabolic rate; the available energy stores were utilized at a slower rate, and (b)increased levels of energy substrates; additional supplies available to maintain viability. These data suggest that the functional state of neural tissue can determine the response to metabolic stress. ^
Resumo:
Coagulase-negative staphylococci (CNS) are recognized as important pathogens and are particularly associated with foreign body infections. S. epidermidis accounts for approximately 75% of the infections caused by CNS. Three genes, sdrF, sdrG, and sdrH, were identified by screening a S. epidermidis genomic library with a probe encompassing the serine-aspartate dipeptide repeat-encoding region (region R) of clfA from S. aureus. SdrG has significant amino acid identity to ClfA, ClfB and other surface proteins of S. aureus. SdrG is also similar to a protein (Fbe) recently described by Nilsson, et al. (Infection and Immunity, 1998, 66:2666–73) from S. epidermidis. The N-terminal domain (A region) of SdrG was expressed as a his-tag fusion protein in E. coli. In an ELISA, this protein, rSdrG(50-597) was shown to bind specifically to fibrinogen (Fg). Western ligand blot analysis showed that SdrG binds the Bβ chain of Fg. To further characterize the rSdrG(50-597)-Fg interaction, truncates of the Fg Bβ chain were made and expressed as recombinant proteins in E. coli. SdrG was shown to bind the full-length Bβ chain (1462), as well as the N-terminal three-quarters (1-341), the N-terminal one-half (1-220) and the N-terminal one-quarter (1-95) Bβ chain constructs. rSdrG(50-597) failed to bind to the recombinant truncates that lacked the N-terminal 25 amino acid residues of this polypeptide suggesting that SdrG recognizes a site within this region of the Bβ chain. Inhibition ELISAs have shown that peptide mimetics, including β1–25, and β6–20, encompassing this 25 residue region can inhibit binding of rSdrG(50-597) to Fg coated wells. Using fluorescence polarization we were able to determine an equilibrium constant (KD) for the interaction of rSdrG(50-597) with the Fg Bβ chain peptide β1–25. The labeled peptide was shown to bind to rSdrG(50-597) with a KD of 0.14 ± 0.01μM. Because rSdrG(50-597) recognizes a site in the Fg Bβ chain close to the thrombin cleavage site, we investigated the possibility of the rSdrG(50-597) site either overlapping or lying close to this cleavage site. An ELISA showed that rSdrG(50-597) binding to thrombin-treated Fg was significantly reduced. In a clot inhibition assay rSdrG(50-597) was able to inhibit fibrin clot formation in a concentration dependent manner. Furthermore, rSdrG(50-597) was able to inhibit clot formation by preventing the release of fibrinopeptide B as determined by HPLC. To further define the interaction between rSdrG(50-597) and peptide β6–20, we utilized an alanine amino acid replacement strategy. The residues in β6–20 that appear to be important in rSdrG(50-597) binding to Fg, were confirmed by the rSdrG(273-597)-β6–20 co-crystal structure that was recently solved by our collaborators at University of Alabama-Birmingham. Additionally, rSdrG(50-597) was not able to bind to Fg from different animal species, rather it bound specifically to human Fg in an ELISA. This suggests that the sequence variation between Fg Bβ chains of different species, specifically with in the N-terminal 25 residues, affects the ability of rSdrG(50-597) binding to Fg, and this may explain why S. epidermidis is primarily a human pathogen. ^
Resumo:
The joint modeling of longitudinal and survival data is a new approach to many applications such as HIV, cancer vaccine trials and quality of life studies. There are recent developments of the methodologies with respect to each of the components of the joint model as well as statistical processes that link them together. Among these, second order polynomial random effect models and linear mixed effects models are the most commonly used for the longitudinal trajectory function. In this study, we first relax the parametric constraints for polynomial random effect models by using Dirichlet process priors, then three longitudinal markers rather than only one marker are considered in one joint model. Second, we use a linear mixed effect model for the longitudinal process in a joint model analyzing the three markers. In this research these methods were applied to the Primary Biliary Cirrhosis sequential data, which were collected from a clinical trial of primary biliary cirrhosis (PBC) of the liver. This trial was conducted between 1974 and 1984 at the Mayo Clinic. The effects of three longitudinal markers (1) Total Serum Bilirubin, (2) Serum Albumin and (3) Serum Glutamic-Oxaloacetic transaminase (SGOT) on patients' survival were investigated. Proportion of treatment effect will also be studied using the proposed joint modeling approaches. ^ Based on the results, we conclude that the proposed modeling approaches yield better fit to the data and give less biased parameter estimates for these trajectory functions than previous methods. Model fit is also improved after considering three longitudinal markers instead of one marker only. The results from analysis of proportion of treatment effects from these joint models indicate same conclusion as that from the final model of Fleming and Harrington (1991), which is Bilirubin and Albumin together has stronger impact in predicting patients' survival and as a surrogate endpoints for treatment. ^
Resumo:
Long-term potentiation (LTP) is a rapidly induced and long lasting increase in synaptic strength and is the leading cellular model for learning and memory in the mammalian brain. LTP was first identified in the hippocampus, a structure implicated in memory formation. LTP induction is dependent on postsynaptic Ca2+ increases mediated by N-methyl-D-aspartate (NMDA) receptors. Activation of other postsynaptic routes of Ca2+ entry, such as voltage-dependent Ca2+ channels (VDCCs) have subsequently been shown to induce a long-lasting increase in synaptic strength. However, it is unknown if VDCC-induced LTP utilized similar cellular mechanisms as the classical NMDA receptor-dependent LTP and if these two forms of LTP display similar properties. This dissertation determines the similarities and differences in VDCC and NMDA receptor-dependent LTP in area CA1 of hippocampal slices and demonstrates that VDCCs and NMDA receptors activate similar cellular mechanisms, such as protein kinases, to induce LTP. However, VDCC and NMDA receptor activated LTP induction mechanisms are compartmentalized in the postsynaptic neuron, such that they do not interact. Consistent with activation properties of NMDA receptors and VDCCs, NMDA receptor and VDCC-dependent LTP have different induction properties. In contrast to NMDA-dependent LTP, VDCC-induced potentiation does not require evoked presynaptic stimulation or display input specificity. These results indicate that there are two different routes of postsynaptic Ca2+ which can induce LTP and the compartmentation of VDCCs and NMDA receptors and/or their resulting Ca2+ increases may account for the distinction between these LTP induction mechanisms.^ One of the molecular targets for postsynaptic Ca2+ that is required for the induction of LTP is protein kinases. Evidence for the role of protein kinase activity in LTP expression is either correlational or controversial. We have utilized a broad range and potent inhibitors of protein kinases to systematically examine the temporal requirement for protein kinases in the induction and expression of LTP. Our results indicate that there is a critical period of persistent protein kinase activity required for LTP induction activated by tetanic stimulation and extending until 20 min after HFS. In addition, our results suggest that protein kinase activity during and immediately after HFS is not sufficient for LTP induction. These results provide evidence for persistent and/or Ca2+ independent protein kinase activity involvement in LTP induction. ^
Neocortical hyperexcitability defect in a mutant mouse model of spike-wave epilepsy, {\it stargazer}
Resumo:
Single-locus mutations in mice can express epileptic phenotypes and provide critical insights into the naturally occurring defects that alter excitability and mediate synchronization in the central nervous system (CNS). One such recessive mutation (on chromosome (Chr) 15), stargazer(stg/stg) expresses frequent bilateral 6-7 cycles per second (c/sec) spike-wave seizures associated with behavioral arrest, and provides a valuable opportunity to examine the inherited lesion associated with spike-wave synchronization.^ The existence of distinct and heterogeneous defects mediating spike-wave discharge (SWD) generation has been demonstrated by the presence of multiple genetic loci expressing generalized spike-wave activity and the differential effects of pharmacological agents on SWDs in different spike-wave epilepsy models. Attempts at understanding the different basic mechanisms underlying spike-wave synchronization have focused on $\gamma$-aminobutyric acid (GABA) receptor-, low threshold T-type Ca$\sp{2+}$ channel-, and N-methyl-D-aspartate receptor (NMDA-R)-mediated transmission. It is believed that defects in these modes of transmission can mediate the conversion of normal oscillations in a trisynaptic circuit, which includes the neocortex, reticular nucleus and thalamus, into spike-wave activity. However, the underlying lesions involved in spike-wave synchronization have not been clearly identified.^ The purpose of this research project was to locate and characterize a distinct neuronal hyperexcitability defect favoring spike-wave synchronization in the stargazer brain. One experimental approach for anatomically locating areas of synchronization and hyperexcitability involved an attempt to map patterns of hypersynchronous activity with antibodies to activity-induced proteins.^ A second approach to characterizing the neuronal defect involved examining the neuronal responses in the mutant following application of pharmacological agents with well known sites of action.^ In order to test the hypothesis that an NMDA receptor mediated hyperexcitability defect exists in stargazer neocortex, extracellular field recordings were used to examine the effects of CPP and MK-801 on coronal neocortical brain slices of stargazer and wild type perfused with 0 Mg$\sp{2+}$ artificial cerebral spinal fluid (aCSF).^ To study how NMDA receptor antagonists might promote increased excitability in stargazer neocortex, two basic hypotheses were tested: (1) NMDA receptor antagonists directly activate deep layer principal pyramidal cells in the neocortex of stargazer, presumably by opening NMDA receptor channels altered by the stg mutation; and (2) NMDA receptor antagonists disinhibit the neocortical network by blocking recurrent excitatory synaptic inputs onto inhibitory interneurons in the deep layers of stargazer neocortex.^ In order to test whether CPP might disinhibit the 0 Mg$\sp{2+}$ bursting network in the mutant by acting on inhibitory interneurons, the inhibitory inputs were pharmacologically removed by application of GABA receptor antagonists to the cortical network, and the effects of CPP under 0 Mg$\sp{2+}$aCSF perfusion in layer V of stg/stg were then compared with those found in +/+ neocortex using in vitro extracellular field recordings. (Abstract shortened by UMI.) ^