1 resultado para Ascorbate

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione (GSH) is involved in the detoxication of numerous chemicals exogenously exposed or endogenously generated. Exposure to these agents cause depletion of cellular GSH rendering these cells more susceptible to the toxic action of these same agents. Formaldehyde (CH(,2)O) was found to deplete cellular GSH, presumably by the formation of the GSH-CH(,2)O complex, S-hydroxymethylglutathione, and its rapid extrusion into the extracellular medium.^ The metabolism and toxicity of CH(,2)O were determined to be dependent upon cellular GSH in vitro and in vivo. The rate of CH(,2)O oxidation decreased and the extent of toxicity increased when isolated rat hepatocytes or strain A/J mice were pretreated with the GSH-depleting agent, diethyl maleate (DEM). Additional experiments were designed to further study the role GSH plays in detoxication using isolated rat hepatocytes.^ L-Methionine protected against the extent of lipid peroxidation and leakage of the cytosolic enzyme, lactate dehydrogenase (LDH), caused by CH(,2)O in DEM-pretreated hepatocytes, further supporting the protective role of GSH against cellular toxicity. The antioxidants, ascorbate, butylated hydroxytoluene, and (alpha)-tocopherol, were all protective against the extent of lipid peroxidation and leakage of LDH in isolated rat hepatocytes. Whereas L-methionine may be protective by increasing the cellular concentration of GSH which is used to detoxify free radicals or by facilitating the rate of CH(,2)O oxidation, the antioxidant, ascorbate, was protective without altering the rate of CH(,2)O oxidation or increasing cellular GSH levels. These results suggest that the free radical-mediated toxicity caused by CH(,2)O in DEM-pretreated hepatocytes is due to the further depletion of GSH by CH(,2)O and not to increased CH(,2)O persistence. How this further depletion in GSH by CH(,2)O in DEM-pretreated hepatocytes results in lipid peroxidation and cell death was further investigated.^ The further decrease in GSH caused by CH(,2)O in DEM-pretreated hepatocytes, suspected of stimulating lipid peroxidation and cell death, was found not to be due to depletion of mitochondrial GSH but to depletion of protein sulfhydryl groups. In addition, cellular toxicity appears more closely correlated with depletion of protein sulfhydryl groups than with an increase in cytosolic free Ca('2+). The combination of CH(,2)O and DEM may be a useful tool in identifying these critical sulfhydryl-protein(s) and to further understand the role GSH plays in detoxication. ^