2 resultados para Array techniques
em DigitalCommons@The Texas Medical Center
Resumo:
Magnetic resonance imaging (MRI) is a non-invasive technique that offers excellent soft tissue contrast for characterizing soft tissue pathologies. Diffusion tensor imaging (DTI) is an MRI technique that has shown to have the sensitivity to detect subtle pathology that is not evident on conventional MRI. ^ Rats are commonly used as animal models in characterizing the spinal cord pathologies including spinal cord injury (SCI), cancer, multiple sclerosis, etc. These pathologies could affect both thoracic and cervical regions and complete characterization of these pathologies using MRI requires DTI characterization in both the thoracic and cervical regions. Prior to the application of DTI for investigating the pathologic changes in the spinal cord, it is essential to establish DTI metrics in normal animals. ^ To date, in-vivo DTI studies of rat spinal cord have used implantable coils for high signal-to-noise ratio (SNR) and spin-echo pulse sequences for reduced geometric distortions. Implantable coils have several disadvantages including: (1) the invasive nature of implantation, (2) loss of SNR due to frequency shift with time in the longitudinal studies, and (3) difficulty in imaging the cervical region. While echo planar imaging (EPI) offers much shorter acquisition times compared to spin-echo imaging, EPI is very sensitive to static magnetic field inhomogeneities and the existing shimming techniques implemented on the MRI scanner do not perform well on spinal cord because of its geometry. ^ In this work, an integrated approach has been implemented for in-vivo DTI characterization of rat spinal cord in the thoracic and cervical regions. A three element phased array coil was developed for improved SNR and extended spatial coverage. A field-map shimming technique was developed for minimizing the geometric distortions in EPI images. Using these techniques, EPI based DWI images were acquired with optimized diffusion encoding scheme from 6 normal rats and the DTI-derived metrics were quantified. ^ The phantom studies indicated higher SNR and smaller bias in the estimated DTI metrics than the previous studies in the cervical region. In-vivo results indicated no statistical difference in the DTI characteristics of either gray matter or white matter between the thoracic and cervical regions. ^
Resumo:
To ensure the integrity of an intensity modulated radiation therapy (IMRT) treatment, each plan must be validated through a measurement-based quality assurance (QA) procedure, known as patient specific IMRT QA. Many methods of measurement and analysis have evolved for this QA. There is not a standard among clinical institutions, and many devices and action levels are used. Since the acceptance criteria determines if the dosimetric tools’ output passes the patient plan, it is important to see how these parameters influence the performance of the QA device. While analyzing the results of IMRT QA, it is important to understand the variability in the measurements. Due to the different form factors of the many QA methods, this reproducibility can be device dependent. These questions of patient-specific IMRT QA reproducibility and performance were investigated across five dosimeter systems: a helical diode array, radiographic film, ion chamber, diode array (AP field-by-field, AP composite, and rotational composite), and an in-house designed multiple ion chamber phantom. The reproducibility was gauged for each device by comparing the coefficients of variation (CV) across six patient plans. The performance of each device was determined by comparing each one’s ability to accurately label a plan as acceptable or unacceptable compared to a gold standard. All methods demonstrated a CV of less than 4%. Film proved to have the highest variability in QA measurement, likely due to the high level of user involvement in the readout and analysis. This is further shown by how the setup contributed more variation than the readout and analysis for all of the methods, except film. When evaluated for ability to correctly label acceptable and unacceptable plans, two distinct performance groups emerged with the helical diode array, AP composite diode array, film, and ion chamber in the better group; and the rotational composite and AP field-by-field diode array in the poorer group. Additionally, optimal threshold cutoffs were determined for each of the dosimetry systems. These findings, combined with practical considerations for factors such as labor and cost, can aid a clinic in its choice of an effective and safe patient-specific IMRT QA implementation.