2 resultados para Architectures

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Divergence of anterior-posterior (AP) limb pattern and differences in vertebral column morphology are the two main examples of mammalian evolution. The Hox genes (homeobox containing gene) have been implicated in driving evolution of these structures. However, regarding Hox genes, how they contribute to the generation of mammalian morphological diversities, is still unclear. Implementing comparative gene expression and phenotypic rescue studies for different mammalian Hox genes could aid in unraveling this mystery. In the first part of this thesis, the expression pattern of Hoxd13 gene, a key Hox gene in the establishment of the limb AP pattern, was examined in developing limbs of bats and mice. Bat forelimbs exhibit a pronounced asymmetric AP pattern and offer a good model to study the molecular mechanisms that contribute to the variety of mammalian limbs. The data showed that the expression domain of bat Hoxd13 was shifted prior to the asymmetric limb plate expansion, whereas its domain in mice was much more symmetric. This finding reveals a correlation between the divergence of Hoxd13 expression and the AP patterning difference in limb development. The second part of this thesis details a phenotypic rescue approach by human HOXB1-9 transgenes in mice with Hoxb1-9 deletion, The mouse mutants displayed homeosis in cervical and anterior thoracic vertebrae. The human transgenes entirely rescued the mouse mutants, suggesting that these human HOX genes have similar functions to their mouse orthologues in anterior axial skeletal patterning. The anterior expressing human HOXB transgenes such as HOXB1-3 were expressed in the mouse embryonic trunk in a similar manner as their murine orthologues. However, the anterior boundary of human HOXB9 expression domain was more posterior than that of the mouse Hoxb9 by 2-3 somites. These data provide the molecular support for the hypothesis that Hox genes are responsible for maintaining similar anterior axial skeletal architectures cervical and anterior thoracic regions, but different architectures in lumbar and posterior thoracic regions between humans and mice. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Gene expression is an important process whereby the genotype controls an individual cell’s phenotype. However, even genetically identical cells display a variety of phenotypes, which may be attributed to differences in their environment. Yet, even after controlling for these two factors, individual phenotypes still diverge due to noisy gene expression. Synthetic gene expression systems allow investigators to isolate, control, and measure the effects of noise on cell phenotypes. I used mathematical and computational methods to design, study, and predict the behavior of synthetic gene expression systems in S. cerevisiae, which were affected by noise. Methods I created probabilistic biochemical reaction models from known behaviors of the tetR and rtTA genes, gene products, and their gene architectures. I then simplified these models to account for essential behaviors of gene expression systems. Finally, I used these models to predict behaviors of modified gene expression systems, which were experimentally verified. Results Cell growth, which is often ignored when formulating chemical kinetics models, was essential for understanding gene expression behavior. Models incorporating growth effects were used to explain unexpected reductions in gene expression noise, design a set of gene expression systems with “linear” dose-responses, and quantify the speed with which cells explored their fitness landscapes due to noisy gene expression. Conclusions Models incorporating noisy gene expression and cell division were necessary to design, understand, and predict the behaviors of synthetic gene expression systems. The methods and models developed here will allow investigators to more efficiently design new gene expression systems, and infer gene expression properties of TetR based systems.