2 resultados para Apparent density

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of the brain and its underlying circuitry is dependent on the formation of trillions of chemical synapses, which are highly specialized contacts that regulate the flow of information from one neuron to the next. It is through these synaptic connections that neurons wire together into networks capable of performing specific tasks, and activity-dependent changes in their structural and physiological state is one way that the brain is thought to adapt and store information. At the ultrastructural level, developmental and activity-dependent changes in the size and shape of dendritic spines have been well documented, and it is widely believed that structural changes in spines are a hallmark sign of synapse maturation and alteration of synaptic physiology. While changes in spine structure have been studied extensively, changes in one of its most prominent components, the postsynaptic density (PSD), have largely evaded observation. The PSD is a protein-rich organelle on the cytoplasmic side of the postsynaptic membrane, where it sits in direct opposition to the presynaptic terminal. The PSD functions both to cluster neurotransmitter receptors at the cell surface as well as organize the intracellular signaling molecules responsible for transducing extracellular signals to the postsynaptic cell. Much is known about the chemical composition of the PSD, but the structural arrangement of its molecular components is not well documented. Adding to the difficulty of understanding such a complex mass of protein machinery is the fact that its protein composition is known to change in response to synaptic activity, meaning that its structure is plastic and no two PSDs are identical. Here, immuno-gold labeling and electron tomography of PSDs isolated throughout development was used to track changes in both the structure and molecular composition of the PSD. State-of-the-art cryo-electron tomography was used to study the fine structure of the PSD during development, and provides an unprecedented glimpse into its molecular architecture in an un-fixed, unstained and hydrated state. Through this analysis, large structural and compositional changes are apparent and suggest a model by which the PSD is first assembled as a mesh-like lattice of proteins that function as support for the later recruitment of various PSD components. Spatial analysis of the recruitment of proteins into the PSD demonstrated that its assembly has an underlying order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growing cells are continuously processing signals of all varieties and responding to these signals by changes in cellular gene expression. One signal that cells in close proximity relay to each other is cell-cell contact. Non-transformed cells respond to cell-cell contact by arrest of growth and entry into G$\sb0,$ a process known as contact inhibition. Transformed cells do not respond to contact inhibition and continue to grow to high cell density, forming foci when in cell culture and tumors in the living organism. The events surrounding the generation, transduction, and response to cellular contact are poorly understood. In the present study, a novel gene product, drp, is shown to be expressed at high levels in cultured cells at high cell density. This density regulated protein, drp, has an apparent molecular weight of 70 kDa. Northern analysis shows drp to be highly expressed in cardiac and skeletal muscle and least abundant in lung and kidney tissues. By homology to two independently derived sequence tagged sites (STSs) used in the human genome project, drp or a closely related sequence maps to human chromosome 12. Density-dependent increases in drp expression have been demonstrated in six different cell lines including NIH 3T3, Hela and a human teratocarcinoma cell line, PA-1. Cells exhibit increased drp expression both when they are plated at increasing concentrations per unit area, or plated at low density and allowed to grow naturally to higher cell density. Cells at high density can exhibit several phenotypes including growth arrest, accumulation of soluble factors in the media, and increased numbers of cell contacts. Growth arrest by serum starvation or TGF-$\beta$ treatment fails to produce an increase in drp expression. Similarly, treatment of low density cells with conditioned media from high density cells fails to elicit drp expression. These results argue that neither soluble factors accumulated or expressed at high density nor simple exit from the cell cycle is sufficient to produce an increase in drp expression. The expression of drp appears to be uniquely regulated by cell density alone. ^