2 resultados para App predictions
em DigitalCommons@The Texas Medical Center
Cerebellar mechanisms for motor learning: Testing predictions from a large-scale computer simulation
Resumo:
The cerebellum is the major brain structure that contributes to our ability to improve movements through learning and experience. We have combined computer simulations with behavioral and lesion studies to investigate how modification of synaptic strength at two different sites within the cerebellum contributes to a simple form of motor learning—Pavlovian conditioning of the eyelid response. These studies are based on the wealth of knowledge about the intrinsic circuitry and physiology of the cerebellum and the straightforward manner in which this circuitry is engaged during eyelid conditioning. Thus, our simulations are constrained by the well-characterized synaptic organization of the cerebellum and further, the activity of cerebellar inputs during simulated eyelid conditioning is based on existing recording data. These simulations have allowed us to make two important predictions regarding the mechanisms underlying cerebellar function, which we have tested and confirmed with behavioral studies. The first prediction describes the mechanisms by which one of the sites of synaptic modification, the granule to Purkinje cell synapses (gr → Pkj) of the cerebellar cortex, could generate two time-dependent properties of eyelid conditioning—response timing and the ISI function. An empirical test of this prediction using small, electrolytic lesions of the cerebellar cortex revealed the pattern of results predicted by the simulations. The second prediction made by the simulations is that modification of synaptic strength at the other site of plasticity, the mossy fiber to deep nuclei synapses (mf → nuc), is under the control of Purkinje cell activity. The analysis predicts that this property should confer mf → nuc synapses with resistance to extinction. Thus, while extinction processes erase plasticity at the first site, residual plasticity at mf → nuc synapses remains. The residual plasticity at the mf → nuc site confers the cerebellum with the capability for rapid relearning long after the learned behavior has been extinguished. We confirmed this prediction using a lesion technique that reversibly disconnected the cerebellar cortex at various stages during extinction and reacquisition of eyelid responses. The results of these studies represent significant progress toward a complete understanding of how the cerebellum contributes to motor learning. ^
Resumo:
The primary interest was in predicting the distribution runs in a sequence of Bernoulli trials. Difference equation techniques were used to express the number of runs of a given length k in n trials under three assumptions (1) no runs of length greater than k, (2) no runs of length less than k, (3) no other assumptions about the length of runs. Generating functions were utilized to obtain the distributions of the future number of runs, future number of minimum run lengths and future number of the maximum run lengths unconditional on the number of successes and failures in the Bernoulli sequence. When applying the model to Texas hydrology data, the model provided an adequate fit for the data in eight of the ten regions. Suggested health applications of this approach to run theory are provided. ^