3 resultados para Antibiotics in veterinary medicine

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of waste pharmaceuticals has been identified and well documented in water sources throughout North America and Europe. Many studies have been conducted which identify the occurrence of various pharmaceutical compounds in these waters. This project is an extensive review of the documented evidence of this occurrence published in the scientific literature. This review was performed to determine if this occurrence has a significant impact on the environment and public health. This project and review found that pharmaceuticals such as sex hormone drugs, antibiotic drugs and antineoplastic/cytostatic agents as well as their metabolites have been found to occur in water sources throughout the United States at levels high enough to have noticeable impacts on human health and the environment. It was determined that the primary sources of this occurrence of pharmaceuticals were waste water effluent and solid wastes from sewage treatment plants, pharmaceutical manufacturing plants, healthcare and biomedical research facilities, as well as runoff from veterinary medicine applications (including aquaculture). ^ In addition, current public policies of US governmental agencies such as the Environmental Protection Agency (EPA), Food and Drug Administration (FDA), and Drug Enforcement Agency (DEA) have been evaluated to see if they are doing a sufficient job at controlling this issue. Specific recommendations for developing these EPA, FDA, and DEA policies have been made to mitigate, prevent, or eliminate this issue.^ Other possible interventions such as implementing engineering controls were also evaluated in order to mitigate, prevent and eliminate this issue. These engineering controls include implementing improved current treatment technologies such as the advancement and improvement of waste water treatment processes utilized by conventional sewage treatment and pharmaceutical manufacturing plants. In addition, administrative controls such as the use of “green chemistry” in drug synthesis and design were also explored and evaluated as possible alternatives to mitigate, prevent, or eliminate this issue. Specific recommendations for incorporating these engineering and administrative controls into the applicable EPA, FDA, and DEA policies have also been made.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C. difficile causes gastrointestinal infections in humans, including severe diarrhea. It is implicated in 20%-30% of cases of antibiotic-associated diarrhea, in 50%-70% of cases of antibiotic-associated colitis, and in >90% of cases of antibiotic-associated pseudomembranous colitis. Exposure to antimicrobial agent, hospitalization and age are some of the risk factors that predispose to CDI. Virtually all hospitalized patients with nosocomially-acquired CDI have a history of treatment with antimicrobials or neoplastic agent within the previous 2 months. The development of CDI usually occurs during treatment with antibiotics or some weeks after completing the course of the antibiotics. ^ After exposure to the organism (often in a hospital), the median incubation period is less than 1 week, with a median time of onset of 2days. The difference in the time between the use of antibiotic and the development of the disease relate to the timing of exogenous acquisition of C. difficile. ^ This paper reviewed the literature for studies on different classes of antibiotics in association with the rates of primary CDI and RCDI from the year 1984 to 2012. The databases searched in this systematic review were: PubMed (National Library of Medicine) and Medline (R) (Ovid). RefWorks was used to store bibliographic data. ^ The search strategy yielded 733 studies, 692 articles from Ovid Medline (R) and 41 articles from PubMed after removing all duplicates. Only 11 studies were included as high quality studies. Out of the 11 studies reviewed, 6 studies described the development of CDI in non-CDI patients taking antibiotics for other purposes and 5 studies identified the risk factors associated with the development of recurrent CDI after exposure to antibiotics. ^ The risk of developing CDI in non-CDI patients receiving beta lactam antibiotics was 2.35%, while fluoroquinolones, clindamycin/macrolides and other antibiotics were associated with 2.64%, 2.54% and 2.35% respectively. Of those who received beta lactam antibiotic, 26.7% developed RCDI, while 36.8% of those who received any fluoroquinolone developed RCDI, 26.5% of those who received either clindamycin or macrolides developed RCDI and 29.1% of those who received other antibiotics developed RCDI. Continued use of non-C. difficile antibiotics especially fluoroquinolones was identified as an important risk factor for primary CDI and recurrent CDI. ^