3 resultados para Angular-momentum J-greater-than-0
em DigitalCommons@The Texas Medical Center
Resumo:
The use of group-randomized trials is particularly widespread in the evaluation of health care, educational, and screening strategies. Group-randomized trials represent a subset of a larger class of designs often labeled nested, hierarchical, or multilevel and are characterized by the randomization of intact social units or groups, rather than individuals. The application of random effects models to group-randomized trials requires the specification of fixed and random components of the model. The underlying assumption is usually that these random components are normally distributed. This research is intended to determine if the Type I error rate and power are affected when the assumption of normality for the random component representing the group effect is violated. ^ In this study, simulated data are used to examine the Type I error rate, power, bias and mean squared error of the estimates of the fixed effect and the observed intraclass correlation coefficient (ICC) when the random component representing the group effect possess distributions with non-normal characteristics, such as heavy tails or severe skewness. The simulated data are generated with various characteristics (e.g. number of schools per condition, number of students per school, and several within school ICCs) observed in most small, school-based, group-randomized trials. The analysis is carried out using SAS PROC MIXED, Version 6.12, with random effects specified in a random statement and restricted maximum likelihood (REML) estimation specified. The results from the non-normally distributed data are compared to the results obtained from the analysis of data with similar design characteristics but normally distributed random effects. ^ The results suggest that the violation of the normality assumption for the group component by a skewed or heavy-tailed distribution does not appear to influence the estimation of the fixed effect, Type I error, and power. Negative biases were detected when estimating the sample ICC and dramatically increased in magnitude as the true ICC increased. These biases were not as pronounced when the true ICC was within the range observed in most group-randomized trials (i.e. 0.00 to 0.05). The normally distributed group effect also resulted in bias ICC estimates when the true ICC was greater than 0.05. However, this may be a result of higher correlation within the data. ^
Resumo:
The development of nosocomial pneumonia was monitored in 96 head-trauma patients requiring mechanical ventilation for up to 10 days. Pneumonia occurred in 28 patients (29.2%) or 53.9 cases per 1,000 admission days. The incidence of nosocomial pneumonia was negatively correlated with cerebral oxygen metabolic rate (CMRO$\sb2$) measured during the first five days. The relative risk of nosocomial pneumonia for patients with CMRO$\sb2$ less than 0.6 umol/gm/min is 2.08 (1.09$-$3.98) times those patients with CMRO$\sb2$ greater than 0.6 umol/gm/min. The association between cerebral oxygen metabolic rate and nosocomial pneumonia was not affected by adjustment of potential confounding factors including age, cimetidine and other infections. These findings provide evidences underlying the CNS-immune system interaction. ^
Resumo:
Radiomics is the high-throughput extraction and analysis of quantitative image features. For non-small cell lung cancer (NSCLC) patients, radiomics can be applied to standard of care computed tomography (CT) images to improve tumor diagnosis, staging, and response assessment. The first objective of this work was to show that CT image features extracted from pre-treatment NSCLC tumors could be used to predict tumor shrinkage in response to therapy. This is important since tumor shrinkage is an important cancer treatment endpoint that is correlated with probability of disease progression and overall survival. Accurate prediction of tumor shrinkage could also lead to individually customized treatment plans. To accomplish this objective, 64 stage NSCLC patients with similar treatments were all imaged using the same CT scanner and protocol. Quantitative image features were extracted and principal component regression with simulated annealing subset selection was used to predict shrinkage. Cross validation and permutation tests were used to validate the results. The optimal model gave a strong correlation between the observed and predicted shrinkages with . The second objective of this work was to identify sets of NSCLC CT image features that are reproducible, non-redundant, and informative across multiple machines. Feature sets with these qualities are needed for NSCLC radiomics models to be robust to machine variation and spurious correlation. To accomplish this objective, test-retest CT image pairs were obtained from 56 NSCLC patients imaged on three CT machines from two institutions. For each machine, quantitative image features with concordance correlation coefficient values greater than 0.90 were considered reproducible. Multi-machine reproducible feature sets were created by taking the intersection of individual machine reproducible feature sets. Redundant features were removed through hierarchical clustering. The findings showed that image feature reproducibility and redundancy depended on both the CT machine and the CT image type (average cine 4D-CT imaging vs. end-exhale cine 4D-CT imaging vs. helical inspiratory breath-hold 3D CT). For each image type, a set of cross-machine reproducible, non-redundant, and informative image features was identified. Compared to end-exhale 4D-CT and breath-hold 3D-CT, average 4D-CT derived image features showed superior multi-machine reproducibility and are the best candidates for clinical correlation.