2 resultados para Anger
em DigitalCommons@The Texas Medical Center
Resumo:
Cardiovascular disease (CVD) is this nation's leading source of morbidity and mortality, with health disparities evident. Despite inconsistencies in the literature, there is a growing body of evidence that links anger and CV reactivity (CVR) to future CVD. Because CVD is a life-long process with beginnings in childhood, and because adolescents experience and express anger frequently, the need to understand the role that anger has in future CV profiles is important. If identifiable patterns are found, nursing interventions can be implemented at the most beneficial point in the lifespan. This study examined data collected as part of The Heartfelt Study (N = 374), which investigated anger in relation to 24-hour ambulatory blood pressure (BP) and CVR in a multi-ethnic (African, Hispanic, and European American) sample of adolescents (Time 1). This investigator conducted a follow-up for all The Heartfelt Study participants, 11 to 13 years old at the beginning of study, still in attendance at the middle school (N = 44) one year later (Time 2) to determine: (1) changes in anger over time were associated with changes in ambulatory CV profiles: systolic (SBP), diastolic (DBP), heart rate (HR), and pulse pressure (PP) over time; and (2) the extent to which CVR, initiated by talking about a recent anger-producing event, related to future ambulatory CV profiles. A mixed-effects regression for repeated measures was used to analyze the data and found that SBP reactivity at Time 1 was significantly (β = 0.2341, t = 5.91, p < 0.0001) associated with ambulatory SBP at Time 2 and PP reactivity at Time 1 was significantly (β = 0.1530, t = 5.70, p < 0.0001) associated with ambulatory PP at Time 2. Changes in anger over time were not associated with changes in ambulatory BP measures over time. Further research on anger and CVR among adolescents over longer periods of time is recommended. ^
Resumo:
BACKGROUND: This observational research study investigated the association of cardiorespiratory fitness and weight status with repeated measures of 24-hr ambulatory blood pressure (24-hr ABP). Little is known about these associations and few data exist examining the interaction between cardiorespiratory fitness and weight status and the contributions of each on 24-hr ABP in youth. ^ METHODS: This research study used secondary analysis data from the "Adolescent Blood Pressure and Anger: Ethnic Differences" study. This current study sample included 374 African-American, Anglo-American, and Mexican-American adolescents 11-16 years of age. Mixed-effects models were used for testing the relationship between weight status and cardiorespiratory fitness and repeated measures of ambulatory blood pressure over 24 hours (24-hr ABP). Weight status was categorized into "normal weight" (BMI<85th percentile), "overweight" (85th≤BMI<95th), and "obese" (BMI≥95th). Cardiorespiratory fitness, determined by heart rate recovery (HRR), was defined as the difference between heart rate at peak exercise and heart rate at two minutes post-exercise, as measured by a height-adjusted step test and stratified into two groups: low and high fitness, using a median split. Ambulatory blood pressure (ABP) was monitored for a 24-hr period on a school day using the Spacelabs ambulatory monitor (Model 90207). Blood pressure and heart rate were recorded at 30 minute intervals throughout the day of recording and at 60 minute intervals during sleep. ^ RESULTS: No significant associations were found between weight status and mean 24-hr systolic blood pressure (SBP) or mean arterial pressure (MAP). A significant and inverse association between weight status and mean 24-hr diastolic blood pressure (DBP) was revealed. Cardiorespiratory fitness was significantly and inversely associated with mean 24-hr ABP. High fitness adolescents had significantly lower mean 24-hr SPB, DBP, and MAP measurements than low fitness adolescents. Compared to low fitness adolescents, high fitness adolescents had 1.90 mmHg, 1.16 mmHg, and 1.68 mmHg lower mean 24-hr SBP, DBP, and MAP, respectively. Additionally, high fitness appeared to afford protection from higher mean 24-hr SBP and MAP, irrespective of weight status. Among normal weight adolescents, low fitness resulted in higher mean 24-hr SBP and MAP, compared to their fit counterparts. Among adolescents categorized as high fitness, increasing weight status did not appear to result in higher mean 24-hr SBP or MAP. Cardiorespiratory fitness, rather than weight status, appeared to be a more dominant predictor of mean 24-hr SBP and MAP. ^ CONCLUSIONS: To our knowledge, this research is the first study to investigate the independent and combined contributions of cardiorespiratory fitness and weight status on 24-hr ABP, all objectively measured. The results of this study may potentially guide and inform future research. It appears that early cardiovascular disease (CVD) prevention should focus on improving cardiorespiratory fitness levels among all adolescents, particularly those adolescents least fit, regardless of their weight status, while obesity prevention efforts continue.^