15 resultados para Analysis in tablets

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research project is to determine whether there is a cost/benefit to allocating financial and other company-related resources to improve environmental, health and safety performance beyond that which is required by law. The issue of whether a company benefits from spending dollars to achieve environmental, health and safety performance beyond legal compliance is an important issue to the chemical manufacturing industry in the United States because of the voluminous and complex legal requirements impacting environmental, health and safety expenditures. The cost/benefit issue has practical significance because many U.S. chemical manufacturing companies base their environmental, health and safety management strategies on just achieving and maintaining compliance with legal requirements when in reality this strategy may actually be a higher cost way of managing environmental, health and safety practices. This difference in environmental, health and safety management strategy is being investigated to determine if managing environmental, health and safety to achieve performance beyond that which is required by law results in a greater benefit to companies in the U.S. chemical manufacturing sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation, the cytogenetic characteristics of bone marrow cells from 41 multiple myeloma patients were investigated. These cytogenetic data were correlated with the total DNA content as measured by flow cytometry. Both the cytogenetic information and DNA content were then correlated with clinical data to determine if diagnosis and prognosis of multiple myeloma could be improved.^ One hundred percent of the patients demonstrated abnormal chromosome numbers per metaphase. The average chromosome number per metaphase ranged from 42 to 49.9, with a mean of 44.99. The percent hypodiploidy ranged from 0-100% and the percent hyperdiploidy from 0-53%. Detailed cytogenetic analyses were very difficult to perform because of the paucity of mitotic figures and the poor chromosome morphology. Thus, detailed chromosome banding analysis on these patients was impossible.^ Thirty seven percent of the patients had normal total DNA content, whereas 63% had abnormal amounts of DNA (one patient with less than normal amounts and 25 patients with greater than normal amounts of DNA).^ Several clinical parameters were used in the statistical analyses: tumor burden, patient status at biopsy, patient response status, past therapy, type of treatment and percent plasma cells. Only among these clinical parameters were any statistically significant correlations found: pretreatment tumor burden versus patient response, patient biopsy status versus patient response and past therapy versus patient response.^ No correlations were found between percent hypodiploid, diploid, hyperdiploid or DNA content, and the patient response status, nor were any found between those patients with: (a) normal plasma cells, low pretreatment tumor mass burden and more than 50% of the analyzed metaphases with 46 chromosomes; (b) normal amounts of DNA, low pretreatment tumor mass burden and more than 50% of the metaphases with 46 chromosomes; (c) normal amounts of DNA and normal quantities of plasma cells; (d) abnormal amounts of DNA, abnormal amounts of plasma cells, high pretreatment tumor mass burden and less than 50% of the metaphases with 46 chromosomes.^ Technical drawbacks of both cytogenetic and DNA content analysis in these multiple myeloma patients are discussed along with the lack of correlations between DNA content and chromosome number. Refined chromosome banding analysis awaits technical improvements before we can understand which chromosome material (if any) makes up the "extra" amounts of DNA in these patients. None of the correlations tested can be used as diagnostic or prognostic aids for multiple myeloma. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently there is no general method to study the impact of population admixture within families on the assumptions of random mating and consequently, Hardy-Weinberg equilibrium (HWE) and linkage equilibrium (LE) and on the inference obtained from traditional linkage analysis. ^ First, through simulation, the effect of admixture of two populations on the log of the odds (LOD) score was assessed, using Prostate Cancer as the typical disease model. Comparisons between simulated mixed and homogeneous families were performed. LOD scores under both models of admixture (within families and within a data set of homogeneous families) were closest to the homogeneous family scores of the population having the highest mixing proportion. Random sampling of families or ascertainment of families with disease affection status did not affect this observation, nor did the mode of inheritance (dominant/recessive) or sample size. ^ Second, after establishing the effect of admixture on the LOD score and inference for linkage, the presence of induced disequilibria by population admixture within families was studied and an adjustment procedure was developed. The adjustment did not force all disequilibria to disappear but because the families were adjusted for the population admixture, those replicates where the disequilibria exist are no longer affected by the disequilibria in terms of maximization for linkage. Furthermore, the adjustment was able to exclude uninformative families or families that had such a high departure from HWE and/or LE that their LOD scores were not reliable. ^ Together these observations imply that the presence of families of mixed population ancestry impacts linkage analysis in terms of the LOD score and the estimate of the recombination fraction. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Diarrhea and malnutrition are the leading causes of mortality for children age one to four in the Dominican Republic. Communities within the Miches watershed lack sanitation infrastructure and water purification systems, which increases the risk of exposure to water-borne pathogens. The purpose of this cross-sectional study was to analyze health information gathered through household interviews and to test water samples for the presence of diarrheagenic pathogens and antibiotic-resistant bacteria within the Miches watershed. Methods. Frequency counts and thematic analysis were used to investigate Human Health Survey responses and Fisher's exact test was used to determine correlation between water source and reported illness. Bacteria cultured from water samples were analyzed by Gram stain, real-time PCR, API® 20E biochemical identification, and for antibiotic resistance. Results. Community members reported concerns about water sources with respect to water quality, availability, and environmental contamination. Pathogenic strains of E. coli were present in the water samples. Drinking aquifer water was positively-correlated with reported stomach aches (p=0.04) while drinking from rivers or creeks was associated with the reported absence of “gripe” (cold or flu) (p=0.01). The lack of association between reported illnesses and water source for the majority of variables suggested that there were multiple vehicles of disease transmission. Antibiotic resistant bacteria were isolated from the water samples tested. Conclusions. The presence of pathogenic E. coli in water samples suggested that water is at least one route of transmission for diarrheagenic pathogens in the Miches watershed. The presence of antibiotic-resistant bacteria in the water samples may indicate the proliferation of resistance plasmids in the environment as a result of antibiotic overuse in human and animal populations and a lack of sanitation infrastructure. An intervention that targets areas of hygiene, sanitation, and water purification is recommended to limit human exposure to diarrheagenic pathogens and antibiotic-resistant organisms. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Common endpoints can be divided into two categories. One is dichotomous endpoints which take only fixed values (most of the time two values). The other is continuous endpoints which can be any real number between two specified values. Choices of primary endpoints are critical in clinical trials. If we only use dichotomous endpoints, the power could be underestimated. If only continuous endpoints are chosen, we may not obtain expected sample size due to occurrence of some significant clinical events. Combined endpoints are used in clinical trials to give additional power. However, current combined endpoints or composite endpoints in cardiovascular disease clinical trials or most clinical trials are endpoints that combine either dichotomous endpoints (total mortality + total hospitalization), or continuous endpoints (risk score). Our present work applied U-statistic to combine one dichotomous endpoint and one continuous endpoint, which has three different assessments and to calculate the sample size and test the hypothesis to see if there is any treatment effect. It is especially useful when some patients cannot provide the most precise measurement due to medical contraindication or some personal reasons. Results show that this method has greater power then the analysis using continuous endpoints alone. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Advisory Committee on Immunization Practices (ACIP) develops written recommendations for the routine administration of vaccines to children and adults in the U.S. civilian population. The ACIP is the only entity in the federal government that makes such recommendations. ACIP elaborates on selection of its members and rules out concerns regarding its integrity, but fails to provide information about the importance of economic analysis in vaccine selection. ACIP recommendations can have large health and economic consequences. Emphasis on economic evaluation in health is a likely response to severe pressures of the federal and state health budget. This study describes the economic aspects considered by the ACIP while sanctioning a vaccine, and reviews the economic evaluations (our economic data) provided for vaccine deliberations. A five year study period from 2004 to 2009 is adopted. Publicly available data from ACIP web database is used. Drummond et al. (2005) checklist serves as a guide to assess the quality of economic evaluations presented. Drummond et al.'s checklist is a comprehensive hence it is unrealistic to expect every ACIP deliberation to meet all of their criteria. For practical purposes we have selected seven criteria that we judge to be significant criteria provided by Drummond et al. Twenty-four data points were obtained in a five year period. Our results show that out of the total twenty-four data point‘s (economic evaluations) only five data points received a score of six; that is six items on the list of seven were met. None of the data points received a perfect score of seven. Seven of the twenty-four data points received a score of five. A minimum of a two score was received by only one of the economic analyses. The type of economic evaluation along with the model criteria and ICER/QALY criteria met at 0.875 (87.5%). These three criteria were met at the highest rate among the seven criteria studied. Our study findings demonstrate that the perspective criteria met at 0.583 (58.3%) followed by source and sensitivity analysis criteria both tied at 0.541 (54.1%). The discount factor was met at 0.250 (25.0%).^ Economic analysis is not a novel concept to the ACIP. It has been practiced and presented at these meetings on a regular basis for more than five years. ACIP‘s stated goal is to utilize good quality epidemiologic, clinical and economic analyses to help policy makers choose among alternatives presented and thus achieve a better informed decision. As seen in our study the economic analyses over the years are inconsistent. The large variability coupled with lack of a standardized format may compromise the utility of the economic information for decision-making. While making recommendations, the ACIP takes into account all available information about a vaccine. Thus it is vital that standardized high quality economic information is provided at the ACIP meetings. Our study may provide a call for the ACIP to further investigate deficiencies within the system and thereby to improve economic evaluation data presented. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation develops and tests a comparative effectiveness methodology utilizing a novel approach to the application of Data Envelopment Analysis (DEA) in health studies. The concept of performance tiers (PerT) is introduced as terminology to express a relative risk class for individuals within a peer group and the PerT calculation is implemented with operations research (DEA) and spatial algorithms. The analysis results in the discrimination of the individual data observations into a relative risk classification by the DEA-PerT methodology. The performance of two distance measures, kNN (k-nearest neighbor) and Mahalanobis, was subsequently tested to classify new entrants into the appropriate tier. The methods were applied to subject data for the 14 year old cohort in the Project HeartBeat! study.^ The concepts presented herein represent a paradigm shift in the potential for public health applications to identify and respond to individual health status. The resultant classification scheme provides descriptive, and potentially prescriptive, guidance to assess and implement treatments and strategies to improve the delivery and performance of health systems. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this cross-sectional study was to examine the relationship of provincial economic development indices with incidences of child injury mortality in Thailand from 1999 - 2001. All injury deaths among children age 1-14 years were included. The independent variables included gross provincial product per capita (GPP/c), poverty and inequality indices, material and social deprivation indices, population in rural/ urban areas, and migration. Due to multicollinearity of such variables, the 76 provinces were categorized by GPP/c quartile, and means of overall injury, drowning, and transport-related mortality rates were compared among quartile groups. Spearman’s rho correlation between GPP/c and injury mortality rates was also performed. Finally, factor analysis was employed to create a set of factors to be treated as uncorrelated variables and stepwise multiple regression was carried out for the effects of the factors on injury mortality rates. A significant direct relationship was observed between GPP/c and overall injury mortality among children age 1-4 years, and 10-14 year-olds of both genders. Drowning was the main cause of this relationship among children age 1-4 years, and transport-related injury was the principle cause among children age 10-14 years. Conversely, provinces with lower GPP/c experienced higher injury mortality rates among school-age children 5-9 years old for both genders, mostly due to drowning. Factor analysis, and multiple regression results confirmed the relationships between economic development and injury mortality rates. These findings revealed that economic development had an adverse impact on injury-related mortality among children 1 to 4 and 10 to14 in Thailand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies indicate that polymorphic genetic markers are potentially helpful in resolving genealogical relationships among individuals in a natural population. Genetic data provide opportunities for paternity exclusion when genotypic incompatibilities are observed among individuals, and the present investigation examines the resolving power of genetic markers in unambiguous positive determination of paternity. Under the assumption that the mother for each offspring in a population is unambiguously known, an analytical expression for the fraction of males excluded from paternity is derived for the case where males and females may be derived from two different gene pools. This theoretical formulation can also be used to predict the fraction of births for each of which all but one male can be excluded from paternity. We show that even when the average probability of exclusion approaches unity, a substantial fraction of births yield equivocal mother-father-offspring determinations. The number of loci needed to increase the frequency of unambiguous determinations to a high level is beyond the scope of current electrophoretic studies in most species. Applications of this theory to electrophoretic data on Chamaelirium luteum (L.) shows that in 2255 offspring derived from 273 males and 70 females, only 57 triplets could be unequivocally determined with eight polymorphic protein loci, even though the average combined exclusionary power of these loci was 73%. The distribution of potentially compatible male parents, based on multilocus genotypes, was reasonably well predicted from the allele frequency data available for these loci. We demonstrate that genetic paternity analysis in natural populations cannot be reliably based on exclusionary principles alone. In order to measure the reproductive contributions of individuals in natural populations, more elaborate likelihood principles must be deployed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Musculoskeletal infections are infections of the bone and surrounding tissues. They are currently diagnosed based on culture analysis, which is the gold standard for pathogen identification. However, these clinical laboratory methods are frequently inadequate for the identification of the causative agents, because a large percentage (25-50%) of confirmed musculoskeletal infections are false negatives in which no pathogen is identified in culture. My data supports these results. The goal of this project was to use PCR amplification of a portion of the 16S rRNA gene to test an alternative approach for the identification of these pathogens and to assess the diversity of the bacteria involved. The advantages of this alternative method are that it should increase sample sensitivity and the speed of detection. In addition, bacteria that are non-culturable or in low abundance can be detected using this molecular technique. However, a complication of this approach is that the majority of musculoskeletal infections are polymicrobial, which prohibits direct identification from the infected tissue by DNA sequencing of the initial 16S rDNA amplification products. One way to solve this problem is to use denaturing gradient gel electrophoresis (DGGE) to separate the PCR products before DNA sequencing. Denaturing gradient gel electrophoresis (DGGE) separates DNA molecules based on their melting point, which is determined by their DNA sequence. This analytical technique allows a mixture of PCR products of the same length that electrophoreses through agarose gels as one band, to be separated into different bands and then used for DNA sequence analysis. In this way, the DGGE allows for the identification of individual bacterial species in polymicrobial-infected tissue, which is critical for improving clinical outcomes. By combining the 16S rDNA amplification and the DGGE techniques together, an alternative approach for identification has been used. The 16S rRNA gene PCR-DGGE method includes several critical steps: DNA extraction from tissue biopsies, amplification of the bacterial DNA, PCR product separation by DGGE, amplification of the gel-extracted DNA, and DNA sequencing and analysis. Each step of the method was optimized to increase its sensitivity and for rapid detection of the bacteria present in human tissue samples. The limit of detection for the DNA extraction from tissue was at least 20 Staphylococcus aureus cells and the limit of detection for PCR was at least 0.05 pg of template DNA. The conditions for DGGE electrophoreses were optimized by using a double gradient of acrylamide (6 – 10%) and denaturant (30-70%), which increased the separation between distinct PCR products. The use of GelRed (Biotium) improved the DNA visualization in the DGGE gel. To recover the DNA from the DGGE gels the gel slices were excised, shredded in a bead beater, and the DNA was allowed to diffuse into sterile water overnight. The use of primers containing specific linkers allowed the entire amplified PCR product to be sequenced and then analyzed. The optimized 16S rRNA gene PCR-DGGE method was used to analyze 50 tissue biopsy samples chosen randomly from our collection. The results were compared to those of the Memorial Hermann Hospital Clinical Microbiology Laboratory for the same samples. The molecular method was congruent for 10 of the 17 (59%) culture negative tissue samples. In 7 of the 17 (41%) culture negative the molecular method identified a bacterium. The molecular method was congruent with the culture identification for 7 of the 33 (21%) positive cultured tissue samples. However, in 8 of the 33 (24%) the molecular method identified more organisms. In 13 of the 15 (87%) polymicrobial cultured tissue samples the molecular method identified at least one organism that was also identified by culture techniques. Overall, the DGGE analysis of 16S rDNA is an effective method to identify bacteria not identified by culture analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Screening for colorectal cancer (CRC) is considered cost effective but screening compliance in the US remains low. There have been very few studies on economic analyses of screening promotion strategies for colorectal cancer. The main aim of the current study is to conduct a cost effectiveness analysis (CEA) and examine the uncertainty involved in the results of the CEA of a tailored intervention to promote screening for CRC among patients of a multispeciality clinic in Houston, TX. ^ Methods. The two intervention arms received a PC based tailored program and web based educational information to promote CRC screening. The incremental cost of implementing a tailored PC based program was compared to the website based education and the status quo of no intervention for each unit of effect after 12 months of delivering the intervention. Uncertainty analysis in the point estimates of cost and effect was conducted using nonparametric bootstrapping. ^ Results. The cost of implementing a web based educational intervention was $36.00 per person and the cost of the tailored PC based interactive intervention was $43.00 per person. The additional cost per person screened for the web-based strategy was $2374 and the effect of the tailored intervention was negative. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Path analysis has been applied to components of the iron metabolic system with the intent of suggesting an integrated procedure for better evaluating iron nutritional status at the community level. The primary variables of interest in this study were (1) iron stores, (2) total iron-binding capacity, (3) serum ferritin, (4) serum iron, (5) transferrin saturation, and (6) hemoglobin concentration. Correlation coefficients for relationships among these variables were obtained from published literature and postulated in a series of models using measures of those variables that are feasible to include in a community nutritional survey. Models were built upon known information about the metabolism of iron and were limited by what had been reported in the literature in terms of correlation coefficients or quantitative relationships. Data were pooled from various studies and correlations of the same bivariate relationships were averaged after z- transformations. Correlation matrices were then constructed by transforming the average values back into correlation coefficients. The results of path analysis in this study indicate that hemoglobin is not a good indicator of early iron deficiency. It does not account for variance in iron stores. On the other hand, 91% of the variance in iron stores is explained by serum ferritin and total iron-binding capacity. In addition, the magnitude of the path coefficient (.78) of the serum ferritin-iron stores relationship signifies that serum ferritin is the most important predictor of iron stores in the proposed model. Finally, drawing upon known relations among variables and the amount of variance explained in path models, it is suggested that the following blood measures should be made in assessing community iron deficiency: (1) serum ferritin, (2) total iron-binding capacity, (3) serum iron, (4) transferrin saturation, and (5) hemoglobin concentration. These measures (with acceptable ranges and cut-off points) could make possible the complete evaluation of all three stages of iron deficiency in those persons surveyed at the community level. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have successfully identified several genetic loci associated with inherited predisposition to primary biliary cirrhosis (PBC), the most common autoimmune disease of the liver. Pathway-based tests constitute a novel paradigm for GWAS analysis. By evaluating genetic variation across a biological pathway (gene set), these tests have the potential to determine the collective impact of variants with subtle effects that are individually too weak to be detected in traditional single variant GWAS analysis. To identify biological pathways associated with the risk of development of PBC, GWAS of PBC from Italy (449 cases and 940 controls) and Canada (530 cases and 398 controls) were independently analyzed. The linear combination test (LCT), a recently developed pathway-level statistical method was used for this analysis. For additional validation, pathways that were replicated at the P <0.05 level of significance in both GWAS on LCT analysis were also tested for association with PBC in each dataset using two complementary GWAS pathway approaches. The complementary approaches included a modification of the gene set enrichment analysis algorithm (i-GSEA4GWAS) and Fisher's exact test for pathway enrichment ratios. Twenty-five pathways were associated with PBC risk on LCT analysis in the Italian dataset at P<0.05, of which eight had an FDR<0.25. The top pathway in the Italian dataset was the TNF/stress related signaling pathway (p=7.38×10 -4, FDR=0.18). Twenty-six pathways were associated with PBC at the P<0.05 level using the LCT in the Canadian dataset with the regulation and function of ChREBP in liver pathway (p=5.68×10-4, FDR=0.285) emerging as the most significant pathway. Two pathways, phosphatidylinositol signaling system (Italian: p=0.016, FDR=0.436; Canadian: p=0.034, FDR=0.693) and hedgehog signaling (Italian: p=0.044, FDR=0.636; Canadian: p=0.041, FDR=0.693), were replicated at LCT P<0.05 in both datasets. Statistically significant association of both pathways with PBC genetic susceptibility was confirmed in the Italian dataset on i-GSEA4GWAS. Results for the phosphatidylinositol signaling system were also significant in both datasets on applying Fisher's exact test for pathway enrichment ratios. This study identified a combination of known and novel pathway-level associations with PBC risk. If functionally validated, the findings may yield fresh insights into the etiology of this complex autoimmune disease with possible preventive and therapeutic application.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few recent estimates of childhood asthma incidence exist in the literature, although the importance of incidence surveillance for understanding asthma risk factors has been recognized. Asthma prevalence, morbidity and mortality reports have repeatedly shown that low-income children are disproportionately impacted by the disease. The aim of this study was to demonstrate the utility of Medicaid claims data for providing statewide estimates of asthma incidence. Medicaid Analytic Extract (MAX) data for Texas children ages 0-17 enrolled in Medicaid between 2004 and 2007 were used to estimate incidence overall and by age group, gender, race and county of residence. A 13+ month period of continuous enrollment was required in order to distinguish incident from prevalent cases identified in the claims data. Age-adjusted incidence of asthma was 4.26/100 person-years during 2005-2007, higher than reported in other populations. Incidence rates decreased with age, were higher for males than females, differed by race, and tended to be higher in rural than urban areas. With this study, we were able to demonstrate the utility of MAX data for estimating asthma incidence, and create a dataset of incident cases to use in further analysis. ^ In subsequent analyses, we investigated a possible association between ambient air pollutants and incident asthma among Medicaid-enrolled children in Harris County Texas between 2005 and 2007. This population is at high risk for asthma, and living in an area with historically poor air quality. We used a time-stratified case-crossover design and conditional logistic regression to calculate odds ratios, adjusted for weather variables and aeroallergens, to assess the effect of increases in ozone, NO2 and PM2.5 concentrations on risk of developing asthma. Our results show that a 10 ppb increase in ozone was significantly associated with asthma during the warm season (May-October), with the strongest effect seen when a 6-day cumulative lag period was used to compute the exposure metric (OR=1.05, 95% CI, 1.02–1.08). Similar results were seen for NO2 and PM 2.5 (OR=1.07, 95% CI, 1.03–1.11 and OR=1.12, 95% CI, 1.03–1.22, respectively). PM2.5 also had significant effects in the cold season (November-April), 5-day cumulative lag: OR=1.11, 95% CI, 1.00–1.22. When compared with children in the lowest quartile of O3 exposure, the risk for children in the highest quartile was 20% higher. This study indicates that these pollutants are associated with newly-diagnosed childhood asthma in this low-income urban population, particularly during the summer months. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.