10 resultados para Amino-terminus
em DigitalCommons@The Texas Medical Center
Resumo:
The sigma (σ) subunit of eubacterial RNA polymerase (RNAP) is required for specific recognition of promoter DNA sequences and transcription initiation. Regulation of bacterial gene expression can be achieved by modulating a factor activity. The Bacillus subtilis sporulation a σ factor, σ K, controls gene expression of the late sporulation regulon. σ K is synthesized as an inactive precursor protein, pro-σ K, with a 20 amino acid pro sequence. Proteolytic processing of the pro sequence produces the active form, σK, which is able to bind to the core subunits of RNAP to direct gene expression. Thus, the pro sequence renders σK inactive in vivo. After processing, the amino terminus of σK consists of region 1.2, which is conserved among various σ factors. To understand the role of the amino terminus of σK, namely the pro sequence and region 1.2, mutagenesis of both regions was pursued. NH 2-terminal truncations of pro-σK were constructed to address how the pro sequence silences σK activity. The work described here shows that the pro sequence inhibits the ability of σ K to associate with the core subunits and that a deletion of only six amino acids of the pro sequence is sufficient to activate pro-σ K for DNA binding and transcription initiation to levels similar to σ K. Additionally, site directed mutagenesis was used to obtain single amino acid substitutions in region 1.2 to address the role of region 1.2 in σ K transcriptional activity. Two mutations were isolated, converting a lysine (K) to an alanine (A) at position three, and an asparagine (N) to a tyrosine (Y) at position five, both of which alter the efficiency of transcription initiation by RNAP containing the mutant σKs. Surprisingly, σ KK3A increased transcript production when compared to wild type. This increase is due to improvement in DNA affinity and increased stability of RNAP-DNA promoter open complexes. σKN5Y showed a decrease in transcription activity that is related to defects in the ability of RNAP to make the transition from the closed to open RNAP-DNA complex. Results of both the pro sequence and region 1.2 analyses indicate that the amino terminus of σK is important for transcription activity and this work adds to the increasing body of evidence that the amino termini of many σ factors modulate transcription initiation by RNAP. ^
Resumo:
Staphylococcus aureus is an opportunistic bacterial pathogen that can infect humans and other species. It utilizes an arsenal of virulence factors to cause disease, including secreted and cell wall anchored factors. Secreted toxins attack host cells, and pore-forming toxins destroy target cells by causing cell lysis. S. aureus uses cell-surface adhesins to attach to host molecules thereby facilitating host colonization. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are a family of cell-wall anchored proteins that target molecules like fibronectin and fibrinogen. The Serine-aspartate repeat (Sdr) proteins are a subset of staphylococcal MSCRAMMs that share similar domain organization. Interestingly, the amino-terminus, is composed of three immunoglobulin-folded subdomains (N1, N2, and N3) that contain ligand-binding activity. Clumping factors A and B (ClfA and ClfB) and SdrG are Sdr proteins that bind to fibrinogen (Fg), a large, plasma glycoprotein that is activated during the clotting cascade to form fibrin. In addition to recognizing fibrinogen, ClfA and ClfB can bind to other host ligands. Analysis of S. aureus strains that cause osteomyelitis led to the discovery of the bone-sialoprotein-binding protein (Bbp), an Sdr protein. Because several MSCRAMMs target more than one molecule, I hypothesized that Bbp may recognize other host proteins. A ligand screen revealed that the recombinant construct BbpN2N3 specifically recognizes human Fg. Surface plasmon resonance was used to determine the affinity of BbpN2N3 for Fg, and a dissociation constant of 540 nM was determined. Binding experiments performed with recombinant Fg chains were used to map the binding of BbpN2N3 to the Fg Aalpha chain. Additionally, Bbp expressed on the surface of Lactococcus lactis and S. aureus Newman bald mediated attachment of these bacteria to Fg Aalpha. To further characterize the interaction between the two proteins, isothermal titration calorimetry and inhibition assays were conducted with synthetic Fg Aalpha peptides. To determine the physiological implications of Bbp binding to Fg, the effect of Bbp on fibrinogen clotting was studied. Results show that Bbp binding to Fg inhibits the formation of fibrin. The consequences of this interaction are currently under investigation. Together, these data demonstrate that human Fg is a novel ligand for Bbp. This study indicates that the MSCRAMM Bbp may aid in staphylococcal attachment by targeting both an extracellular matrix and a blood plasma protein. The implications of these novel findings are discussed.
Resumo:
The contents of this dissertation include studies on the mechanisms by which FGF and growth factor down-stream kinases inactivate myogenin; characterization of myogenin phosphorylation and its role in regulation of myogenin activity; analysis the C-terminal transcriptional activation domain of myogenin; studies on the nuclear localization of myogenin and characterization of proteins that interact with PKC.^ Activation of muscle transcription by the MyoD family requires their heterodimerization with ubiquitous bHLH proteins such as the E2A gene products E12 and E47. I have shown that dimerization with E2A products potentiates phosphorylation of myogenin at serine 43 in its amino-terminus and serine 170 in the carboxyl-terminal transcription activation domains. Mutations of these sites resulted in enhanced transcriptional activity of myogenin, suggesting that their phosphorylation diminishes myogenin's transcriptional activity. Consistent with the role of phosphorylation at serine 170, analysis of the carboxyl-terminal transcriptional activation domain by deletion has revealed a stretch of residues from 157 to 170 which functions as a negative element for myogenin activity.^ In addition to inducing phosphorylation of myogenin, E12 also localizes myogenin to the nucleus. The DNA binding and dimerization mutants of myogenin show various deficiencies in nuclear localization. Cotransfection of E12 with the DNA binding mutants, but not a dimerization mutant, greatly enhances their nuclear binding. These data suggest that the nuclear localization signal is located in the DNA binding region and myogenin can also be nuclear localized by virtue of dimerizing with a nuclear protein.^ FGF is one of the most potent inhibitors of myogenesis and activates many down-stream pathways to exert its functions. One of these pathway is the MAP kinase pathway. Studies have shown that Raf-1 and Erk-1 kinase inactivate transactivation by myogenin and E proteins independent of DNA binding. The other is the PKC pathway. In transfected cells, FGF induces phosphorylation of thr-87 that maps to the previously identified PKC sites in the DNA binding domain of myogenin. Myogenin mutant T-N87 could resist the inhibition directed to the bHLH domain by FGF, suggesting that FGF inactivates myogenin by inducing phosphorylation of this site. In C2 myotubes, where FGF receptors are lost, the phosphatase inhibitor, okadaic acid, and phorbal ester PdBu, can also induce the phosphorylation of thr-87. This result supports the previous observation and suggests that in myotubes, other mechanisms, such as innervation, may inactivate myogenin through PKC induced phosphorylation.^ Many functions of PKC have been well documented, yet, little is known about the activators or effectors of PKC or proteins that mediate PKC nuclear localizations. Identification of PKC binding proteins will help to understand the molecular mechanism of PKC function. Two proteins that interact with the C kinase (PICKS) have been characterized, PICK-1 and PICK-2. PICK1 interacts with two conserved regions in the catalytic domain of PKC. It is localized to the perinuclear region and is phosphorylated in response to PKC activation. PICK2 is a novel protein with homology to the heat shock protein family. It interacts extensively with the catalytic domain of PKC and is localized in the cytoplasm in a punctate pattern. PICK1 and PICK2 may play important roles in mediating the actions of PKC. ^
Resumo:
Two regions in the 3$\prime$ domain of 16S rRNA (the RNA of the small ribosomal subunit) have been implicated in decoding of termination codons. Using segment-directed PCR random mutagenesis, I isolated 33 translational suppressor mutations in the 3$\prime$ domain of 16S rRNA. Characterization of the mutations by both genetic and biochemical methods indicated that some of the mutations are defective in UGA-specific peptide chain termination and that others may be defective in peptide chain termination at all termination codons. The studies of the mutations at an internal loop in the non-conserved region of helix 44 also indicated that this structure, in a non-conserved region of 16S rRNA, is involved in both peptide chain termination and assembly of 16S rRNA.^ With a suppressible trpA UAG nonsense mutation, a spontaneously arising translational suppressor mutation was isolated in the rrnB operon cloned into a pBR322-derived plasmid. The mutation caused suppression of UAG at two codon positions in trpA but did not suppress UAA or UGA mutations at the same trpA positions. The specificity of the rRNA suppressor mutation suggests that it may cause a defect in UAG-specific peptide chain termination. The mutation is a single nucleotide deletion (G2484$\Delta$) in helix 89 of 23S rRNA (the large RNA of the large ribosomal subunit). The result indicates a functional interaction between two regions of 23S rRNA. Furthermore, it provides suggestive in vivo evidence for the involvement of the peptidyl-transferase center of 23S rRNA in peptide chain termination. The $\Delta$2484 and A1093/$\Delta$2484 (double) mutations were also observed to alter the decoding specificity of the suppressor tRNA lysT(U70), which has a mutation in its acceptor stem. That result suggests that there is an interaction between the stem-loop region of helix 89 of 23S rRNA and the acceptor stem of tRNA during decoding and that the interaction is important for the decoding specificity of tRNA.^ Using gene manipulation procedures, I have constructed a new expression vector to express and purify the cellular protein factors required for a recently developed, realistic in vitro termination assay. The gene for each protein was cloned into the newly constructed vector in such a way that expression yielded a protein with an N-terminal affinity tag, for specific, rapid purification. The amino terminus was engineered so that, after purification, the unwanted N-terminal tag can be completely removed from the protein by thrombin cleavage, yielding a natural amino acid sequence for each protein. I have cloned the genes for EF-G and all three release factors into this new expression vector and the genes for all the other protein factors into a pCAL-n expression vector. These constructs will allow our laboratory group to quickly and inexpensively purify all the protein factors needed for the new in vitro termination assay. (Abstract shortened by UMI.) ^
Resumo:
The VirB11 ATPase is an essential component of an Agrobacterium tumefaciens type IV bacterial secretion system that transfers oncogenic nucleoprotein complexes to susceptible plant cells. This dissertation investigates the subcellular localization and homo-oligomeric state of the VirB11 ATPase in order to provide insights about the assembly of the protein as a subunit of this membrane-associated transfer system. Subcellular fractionation studies and quantitative immunoblot analysis demonstrated that $\sim$30% of VirB11 partitioned as soluble protein and $\sim$70% was tightly associated with the bacterial cytoplasmic membrane. No differences were detected in VirB11 subcellular localization and membrane association in the presence or absence of other transport system components. Mutations in virB11 affecting protein function were mapped near the amino terminus, just upstream of a region encoding a Walker 'A' nucleotide-binding site, and within the Walker 'A' motif partitioned almost exclusively with the cytoplasmic membrane, suggesting that an activity associated with nucleotide binding could modulate the affinity of VirB11 for the cytoplasmic membrane. Merodiploid analysis of VirB11 mutant and truncation derivatives provided strong evidence that VirB11 functions as a homo- or heteromultimer and that the C-terminal half of VirB11 contains a protein interaction domain. A combination of biochemical and molecular genetic approaches suggested that VirB11 and the green fluorescence protein (GFP) formed a mixed multimer as demonstrated by immunoprecipitation experiments with anti-GFP antibodies. Second, a hybrid protein composed of VirB11 fused to the N-terminal DNA-binding domain of bacteriophage $\lambda$ cI repressor conferred immunity to $\lambda$ superinfection, demonstrating that VirB11 self-association promotes dimerization of the chimeric repressor. A conserved Walker 'A' motif, though required for VirB11 function in T-complex export, was not necessary for VirB11 self-association. Sequences in both the N- and the C-terminal halves of the protein were found to contribute to self-association of the full length protein. Chemical cross-linking experiments with His$\sb6$ tagged VirB11 suggested that VirB11 probably assembles into a higher order homo-oligomeric complex. ^
Resumo:
Cells are exposed to a variety of environmental and physiological changes including temperature, pH and nutrient availability. These changes cause stress to cells, which results in protein misfolding and altered cellular protein homeostasis. How proteins fold into their three-dimensional functional structure is a fundamental biological process with important relevance to human health. Misfolded and aggregated proteins are linked to multiple neurodegenerative diseases, cardiovascular disease and cystic fibrosis. To combat proteotoxic stress, cells deploy an array of molecular chaperones that assist in the repair or removal of misfolded proteins. Hsp70, an evolutionarily conserved molecular chaperone, promotes protein folding and helps maintain them in a functional state. Requisite co-chaperones, including nucleotide exchange factors (NEFs) strictly regulate and serve to recruit Hsp70 to distinct cellular processes or locations. In yeast and human cells, three structurally non-related cytosolic NEFs are present: Sse1 (Hsp110), Fes1 (HspBP1) and Snl1 (Bag-1). Snl1 is unique among the cytosolic NEFs as it is localized at the ER membrane with its Hsp70 binding (BAG) domain exposed to the cytosol. I discovered that Snl1 distinctly interacts with assembled ribosomes and several lines of evidence indicate that this interaction is both independent of and concurrent with binding to Hsp70 and is not dependent on membrane localization. The ribosome-binding site is identified as a short lysine-rich motif within the amino terminus of the Snl1 BAG domain distinct from the Hsp70 interaction region. In addition, I demonstrate ribosome association with the Snl1 homolog in the pathogenic fungus, Candida albicans and localize this putative NEF to a perinuclear/ER membrane, suggesting functional conservation in fungal BAG domain-containing proteins. As a first step in determining specific domain architecture in fungal BAG proteins, I present the preliminary steps of protein purification and analysis of the minimal Hsp70 binding region in in both S.cerevisiae and C. albicans Snl1. Contrary to previous in vitro evidence which showed the Fes1 NEF to interact with both cytosolic Hsp70s, Ssa and Ssb, Fes1 is shown to interact specifically with Ssa when expressed under normal cellular conditions in S. cerevisiae. This is the first reported evidence of Hsp70 binding selectivity for a cytosolic NEF, and suggests a possible mechanism to achieve specificity in Hsp70-dependent functions. Taken together, the work presented in this dissertation highlights the striking divergence among Hsp70 co-chaperones in selecting binding partners, which may correlate with their specific roles in the cell.
Resumo:
Alternative RNA splicing is a critical process that contributes variety to protein functions, and further controls cell differentiation and normal development. Although it is known that most eukaryotic genes produce multiple transcripts in which splice site selection is regulated, how RNA binding proteins cooperate to activate and repress specific splice sites is still poorly understood. In addition how the regulation of alternative splicing affects germ cell development is also not well known. In this study, Drosophila Transformer 2 (Tra2) was used as a model to explore both the mechanism of its repressive function on its own pre-mRNA splicing, and the effect of the splicing regulation on spermatogenesis in testis. Half-pint (Hfp), a protein known as splicing activator, was identified in an S2 cell-based RNAi screen as a co-repressor that functions in combination with Tra2 in the splicing repression of the M1 intron. Its repressive splicing function is found to be sequence specific and is dependent on both the weak 3’ splice site and an intronic splicing silencer within the M1 intron. In addition we found that in vivo, two forms of Hfp are expressed in a cell type specific manner. These alternative forms differ at their amino terminus affecting the presence of a region with four RS dipeptides. Using assays in Drosophila S2 cells, we determined that the alternative N terminal domain is necessary in repression. This difference is probably due to differential localization of the two isoforms in the nucleus and cytoplasm. Our in vivo studies show that both Hfp and Tra2 are required for normal spermatogenesis and cooperate in repression of M1 splicing in spermatocytes. But interestingly, Tra2 and Hfp antagonize each other’s function in regulating germline specific alternative splicing of Taf1 (TBP associated factor 1). Genetic and cytological studies showed that mutants of Hfp and Taf1 both cause similar defects in meiosis and spermatogenesis. These results suggest Hfp regulates normal spermatogenesis partially through the regulation of taf1 splicing. These observations indicate that Hfp regulates tra2 and taf1 activity and play an important role in germ cell differentiation of male flies.
Resumo:
Phosphatidylserine decarboxylase of E. coli, a cytoplasmic membrane protein, catalyzes the formation of phosphatidylethanolamine, the principal phospholipid of the organism. The activity of the enzyme is dependent on a covalently bound pyruvate (Satre and Kennedy (1978) J. Biol. Chem. 253, 479-483). This study shows that the enzyme consists of two nonidentical subunits, $\alpha$ (Mr = 7,332) and $\beta$ (Mr = 28,579), with the pyruvate prosthetic group in amide linkage to the amino-terminus of the $\alpha$ subunit. Partial protein sequence and DNA sequence analysis reveal that the two subunits are derived from a proenzyme ($\pi$ subunit, Mr = 35,893) through a post-translational event. During the conversion of the proenzyme to the $\alpha$ and $\beta$ subunits, the peptide bond between Gly253-Ser254 is cleaved, and Ser254 is converted to the pyruvate prosthetic group at the amino-terminus of the $\alpha$ subunit (Li and Dowhan (1988) J. Biol. Chem. 263, 11516-11522).^ The proenzyme cannot be detected in cells carrying either single or multiple copies of the gene (psd), but can be observed in a T7 RNA polymerase/promoter and transcription-translation system. The cleavage of the wild-type proenzyme occurs rapidly with a half-time on the order of 2 min. Changing of the Ser254 to cysteine (S254C) or threonine (S254T) slows the cleavage rate dramatically and results in mutants with a half-time for processing of around 2-4 h. Change of the Ser254 to alanine (S254A) blocks the cleavage of the proenzyme. The reduced processing rate with the mutations of the proenzyme is consistent with less of the functional enzyme being made. Mutants S254C and S254T produce $\sim$15% and $\sim$1%, respectively, of the activity of the wild-type allele, but can still complement a temperature-sensitive mutant of the psd locus. Neither detectable activity nor complementation is observed by mutant S254A. These results are consistent with the hydroxyl-group of the Ser254 playing a critical role in the cleavage of the peptide bond Gly253-Ser254 of the pro-phosphatidylserine decarboxylase, and support the mechanism proposed by Snell and co-workers (Recsei and Snell (1984) Annu. Rev. Biochem. 53, 357-387) for the formation of the prosthetic group of pyruvate-dependent decarboxylases. ^
Resumo:
Transglutaminases are a family of enzymes that catalyze the covalent cross-linking of proteins through the formation of $\varepsilon$-($\gamma$-glutaminyl)-lysyl isopeptide bonds. Tissue transglutaminase (Tgase) is an intracellular enzyme which is expressed in terminally differentiated and senescent cells and also in cells undergoing apoptotic cell death. To characterize this enzyme and examine its relationship with other members of the transglutaminase family, cDNAs, the first two exons of the gene and 2 kb of the 5$\sp\prime$ flanking region, including the promoter, were isolated. The full length Tgase transcript consists of 66 bp of 5$\sp\prime$-UTR (untranslated) sequence, an open reading frame which encodes 686 amino acids and 1400 bp of 3$\sp\prime$-UTR sequence. Alignment of the deduced Tgase protein sequence with that of other transglutaminases revealed regions of strong homology, particularly in the active site region.^ The Tgase cDNA was used to isolate and characterize a genomic clone encompassing the 5$\sp\prime$ end of the mouse Tgase gene. The transcription start site was defined using genomic and cDNA clones coupled with S1 protection analysis and anchored PCR. This clone includes 2.3 kb upstream of the transcription start site and two exons that contain the first 256 nucleotides of the mouse Tgase cDNA sequence. The exon intron boundaries have been mapped and compared with the exon intron boundaries of three members of the transglutaminase family: human factor XIIIa, the human keratinocyte transglutaminase and human erythrocyte band 4.1. Tissue Tgase exon II is similar to comparable exons of these genes. However, exon I bears no resemblance with any of the other transglutaminase amino terminus exons.^ Previous work in our laboratory has shown that the transcription of the Tgase gene is directly controlled by retinoic acid and retinoic acid receptors. To identify the region of the Tgase gene responsible for regulating its expression, fragments of the Tgase promoter and 5$\sp\prime$-flanking region were cloned into the chloramphenicol actetyl transferase (CAT) reporter constructs. Transient transfection experiments with these constructs demonstrated that the upstream region of Tgase is a functional promoter which contains a retinoid response element within a 1573 nucleotide region spanning nucleotides $-$252 to $-$1825. ^
Resumo:
The tumor-suppressing function of p53 can be affected in a variety of manners. Here, we describe a novel mechanism of transformation by mutant p53. Previously, it had been believed that mutant p53 molecules transform cells by oligomerizing with wild-type p53 and inactivating it. However, we demonstrated that there exists an additional mechanism of inactivation of p53 available to p53 mutants. It involves sequestration of cofactors necessary to p53, and subsequent interruption of its transactivation and tumor suppression functions. The p53 amino or carboxyl termini, known to interact with a large number of cellular factors, can affect wild-type p53 in this manner. Although they are unable to oligomerize with wild-type p53, they transform cells containing p53, and inhibit its transactivation ability. In addition, they interrupt growth suppression by p53, but not RB, confirming that they specifically affect p53 function, rather than having a general growth-stimulatory phenomenon. Also, we have cloned a p53 tumor mutation which results in expression of the amino terminus of p53. This provides a means to study the factor-sequestration transforming mechanism in vivo. Additionally, we found that the published sequence of the mdm2 gene is in error. mdm2 is a gene intimately involved with p53, blocking its ability to transform cells. Finally, previous data had established the influence of cell-cycle status on p53 function. In growth-arrested cells, wild-type p53 expressed by a transgene cannot activate transcription, but if these cells are forced to cycle by addition of cyclin E, p53 once again becomes functional. In this study, we extend these findings by examining only those cells successfully transfected, using fluorescence-activated cell sorting. Our results support the previous data, that cyclin E pushes growth-arrested cells back into the cell cycle. In summary, we have demonstrated the potential importance of cofactor association and protein modification to the abilities of p53 to cause transcription activation and repression, inhibition of DNA replication and induction of DNA repair, and initiation of cell-cycle arrest and apoptosis. Further elucidation of these processes and their roles in tumor suppression will prove fascinating indeed. ^