2 resultados para Alternaria brown spot
em DigitalCommons@The Texas Medical Center
Resumo:
Background. About a third of the world’s population is infected with tuberculosis (TB) with sub-Saharan Africa being the worst hit. Uganda is ranked 16th among the countries with the biggest TB burden. The burden in children however has not been determined. The burden of TB has been worsened by the advent of HIV and TB is the leading cause of mortality in HIV infected individuals. Development of TB disease can be prevented if TB is diagnosed during its latent stage and treated with isoniazid. For over a century, latent TB infection (LTBI) was diagnosed using the Tuberculin Skin Test (TST). New interferon gamma release assays (IGRA) have been approved by FDA for the diagnosis of LTBI and adult studies have shown that IGRAs are superior to the TST but there have been few studies in children especially in areas of high TB and HIV endemicity. ^ Objective. The objective of this study was to examine whether the IGRAs had a role in LTBI diagnosis in HIV infected children in Uganda. ^ Methods. Three hundred and eighty one (381) children were recruited at the Baylor College of Medicine-Bristol Meyers Squibb Children’s Clinical Center of Excellence at Mulago Hospital, Kampala, Uganda between March and August 2010. All the children were subjected to a TST and T-SPOT ®.TB test which was the IGRA chosen for this study. Sputum examination and chest x-rays were also done to rule out active TB. ^ Results. There was no statistically significant difference between the tests. The agreement between the two assays was 95.9% and the kappa statistic was 0.7 (95% CI: 0.55–0.85, p-value<0.05) indicating a substantial or good agreement. The TST was associated with older age and higher weight for age z-scores but the T-SPOT®. TB was not. Both tests were associated with history of taking anti-retroviral therapy (ART). ^ Conclusion. Before promoting use of IGRAs in children living in HIV/TB endemic countries, more research needs to be done. ^
Resumo:
The tumor suppressor p53 is a phosphoprotein which functions as a transcriptional activator. By monitoring the transcriptional activity, we studied how p53 functions is regulated in relation to cell growth and contact inhibition. When cells were arrested at G1 phase of the cell cycle by contact inhibition, we found that p53 transactivation function was suppressed. When contact inhibition was overridden by cyclin E overexpression which stimulates cell cycle progression, p53 function was restored. This observation led to the development of a cell density assay to study the regulation of p53 function during cell cycle for the functional significance of p53 phosphorylation. The murine p53 is phosphorylated at serines 7, 9, 12, 18, 37, 312 and 389. To understand the role of p53 phosphorylation, we generated p53 constructs encoding serine-to-alanine or serine-to-glutamate mutations at these codons. The transcriptional activity were measured in cells capable of contact inhibition. In low-density cycling cells, no difference in transcriptional activity was found between wild type p53 and any of the mutants. In contact-inhibited cells, however, only mutations of p53 at serine 389 resulted in altered responses to cell cycle arrest and to cyclin E overexpression. The mutant with serine-to-glutamate substitution at codon 389 retained its function in contact inhibited cells. Cyclin E overexpression in these cells induced p53 phosphorylation at serine 389. Furthermore, we showed that phosphorylation at serine 389 regulates p53 DNA binding activity. Our findings implicate that phosphorylation is an important mechanism for p53 activation.^ p53 is the most frequently mutated gene in human tumors. To study the mechanism of p53 inactivation by mutations, we carried out detailed analysis of a murine p53 mutation with an arginine-to-tryptophane substitution at codon 245. The corresponding human p53 mutation at amino acid 248 is the most frequently mutated codon in tumors. We showed that this mutant is inactive in suppressing focus formation, binding to DNA and transactivation. Structural analysis revealed that this mutant assumes the wild type protein conformation. These findings define a novel class of p53 mutations and help to understand structure-function relationship of p53. ^