3 resultados para Alpha Fetoprotein

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discovery and characterization of oncofetal proteins have led to significant advances in early cancer diagnosis and therapeutic monitoring of patients undergoing cancer chemotherapy. These tumor-associated antigens are presently measured by sensitive, specific immunoassay techniques based on the detection of minute amounts of labeled antigen or antibody incorporated into immune complexes, which must be isolated from free antigen and antibody.^ Since there are several disadvantages with using radioisotopes, the most common immunolabel, one major objective was to prepare covalently coupled enzyme-antibody conjugates and evaluate their use as a practical alternative to radiolabeled immune reagents. An improved technique for the production of enzyme-antibody conjugates was developed that involves oxidizing the carbohydrate moieties on a glycoprotein enzyme, then introducing antibody in the presence of polyethylene glycol (PEG). Covalent enzyme-antibody conjugates involving alkaline phosphatase and amyloglucosidase were produced and characterized.^ In order to increase the sensitivity of detecting the amyloglucosidase-antibody conjugate, an enzyme cycling assay was developed that measures glucose, the product of maltose cleavage by amyloglucosidase, in the picomole range. The increased sensitivity obtained by combined usage of the amyloglucosidase-antibody conjugate and enzyme cycling assay was then compared to that of conventional enzyme immunoassay (EIA).^ For immune complex isolation, polystyrene tubes and protein A-bearing Staphylococcus aureus were evaluated as solid phase matrices, upon which antibodies can be immobilized. A sandwich-type EIA, using antibody-coated S. aureus, was developed that measures human albumin (HSA) in the nanogram range. The assay, using an alkaline phosphatase-anti-HSA conjugate, was applied to the determination of HSA in human urine and evaluated extensively for its clinical applicability.^ Finally, in view of the clinical significance of alpha-fetoprotein (AFP) as an oncofetal antigen and the difficulty with its purification for use as an immunogen and assay standard, a chemical purification protocol was developed that resulted in a high yield of immunochemically pure AFP. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In response to tumor hypoxia, specific genes that promote angiogenesis, proliferation, and survival are induced. Globally, I find that hypoxia induces a mixed pattern of histone modifications that are typically associated with either transcriptional activation or repression. Furthermore, I find that selective activation of hypoxia-inducible genes occurs simultaneously with widespread repression of transcription. I analyzed histone modifications at the core promoters of hypoxia-repressed and -activated genes and find that distinct patterns of histone modifications correlate with transcriptional activity. Additionally, I discovered that trimethylated H3-K4, a modification generally associated with transcriptional activation, is induced at both hypoxia-activated and repressed genes, suggesting a novel pattern of histone modifications induced during hypoxia. ^ In order to determine the mechanism of hypoxia-induced widespread repression of transcription, I focused my studies on negative cofactor 2 (NC2). Previously, we found that hypoxia-induced repression of the alpha-fetoprotein (AFP) gene occurs during preinitiation complex (PIC) assembly, and I find that NC2, an inhibitor of PIC assembly, is induced during hypoxia. Moreover, I find that the beta subunit of NC2 is essential for hypoxia-mediated repression of AFP, as well as the widespread repression of transcription observed during hypoxia. Previous data in Drosophila and S. cerevisiae indicate that NC2 functions as either an activator or a repressor of transcription. The mechanism of NC2-mediated activation remains unclear; although, Drosophila NC2 function correlates with specific core promoter elements. I tested if NC2 activates transcription in mammalian cells using this core promoter-specific model as a guide. Utilizing site-specific mutagenesis, I find that NC2 function in mammalian cells is not dependent upon specific core promoter elements; however, I do find that mammalian NC2 does function in a gene-specific manner as either an activator or repressor of transcription during hypoxia. Furthermore, I find that binding of the alpha subunit of NC2 specifically correlates with NC2-mediated transcriptional activation. NC2α and NC2β are both required for NC2-mediated transcriptional activation; whereas, NC2β alone is required for hypoxia-induced transcriptional repression. Together, these data indicate that hypoxia mediates changes in gene expression through both chromatin modifications and NC2 function. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transcription factors must be able to access their DNA binding sites to either activate or repress transcription. However, DNA wrapping and compaction into chromatin occludes most binding sites from ready access by proteins. Pioneer transcription factors are capable of binding their DNA elements within a condensed chromatin context and then reducing the level of nucleosome occupancy so that the chromatin structure is more accessible. This altered accessibility increases the probability of other transcription factors binding to their own DNA binding elements. My hypothesis is that Foxa1, a ‘pioneer’ transcription factor, activates alpha-fetoprotein (AFP) expression by binding DNA in a chromatinized environment, reducing the nucleosome occupancy and facilitating binding of additional transcription factors.^ Using retinoic-acid differentiated mouse embryonic stem cells, we illustrate a mechanism for activation of the tumor marker AFP by the pioneer transcription factor Foxa1 and TGF-β downstream effector transcription factors Smad2 and Smad4. In differentiating embryonic stem cells, binding of the Foxa1 forkhead box transcription factor to chromatin reduces nucleosome occupancy and levels of linker histone H1 at the AFP distal promoter. The more accessible DNA is subsequently bound by the Smad2 and Smad4 transcription factors, concurrent with activation of transcription. Chromatin immunoprecipitation analyses combined with siRNA-mediated knockdown indicate that Smad protein binding and the reduction of nucleosome occupancy at the AFP distal promoter is dependent on Foxa1. In addition to facilitating transcription factor binding, Foxa1 is also associated with histone modifications related to active gene expression. Acetylation of lysine 9 on histone H3, a mark that is associated active transcription, is dependent on Foxa1, while methylation of H3K4, also associated with active transcription, is independent of Foxa1. I propose that Foxa1 potentiates a region of chromatin to respond to Smad proteins, leading to active expression of AFP.^ These studies demonstrate one mechanism whereby a transcription factor can alter the accessibility of additional transcription factors to chromatin, by altering nucleosome positions. Specifically, Foxa1 exposes DNA so that Smad4 can bind to its regulatory element and activate transcription of the tumor-marker gene AFP.^