3 resultados para Allografts

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Class I MHC proteins have been shown to induce accelerated rejection or prolong survival of allografts in various experimental models. These immunological effects have been attributed to the highly polymorphic alpha helical regions of the extracellular portions of the class I MHC molecule. The present experiments were designed to elucidate the immunomodulatory effects of these polymorphic regions and delineate the mechanisms involved. Soluble allochimeric class I MHC proteins were produced by substituting the PVG class I MHC RT1.Ac amino acid residues within the a 1 helical region with those of the donor BN ( a 1hn-RT1.Ac), the a 2 helical region of BN ( a 2hn-RT1.Ac), and both the a 1 and a 2 helical regions (RT1.An). The class I MHC proteins were produced in an E. coli protein expression system. The a 2hn-RT1.Ac and RT1.An proteins, when administered subcutaneously into PVG hosts 7 days prior to transplantation, resulted in accelerated rejection of BN cardiac allografts. The a 1hn-RT1.Ac construct did not demonstrate such immunogenic effects. Intra-portal administration of a 1hn-RT1.Ac or RT1.An, in combination with perioperative CsA, induced tolerance to BN cardiac allografts. The a 1hn-RT1.Ac protein was able to induce tolerance in a larger majority of the PVG recipients and at a lower dose of protein when compared to the RT1.An protein. RT1.An administered orally to PVG recipients also induced long term survival of cardiac allografts. In vitro analysis revealed that lymphocytes from tolerant hosts were hyporesponsive to donor splenocytes, but responsive to 3rd party splenocytes. Evaluation of T cell cytokine expression patterns revealed that rejector PVG hosts displayed a Type I T-cell response when re-challenged with donor splenocytes, in contrast to tolerant animals that displayed a Type II T-cell response. FACS analysis of the T cells revealed that the ratio of CD4 to CD8 cells was 3:1 and was consistent in the groups tested suggesting a complex interaction between the subsets of T cells, yielding the observed results. Histologic analysis of the cardiac allografts revealed that tolerant PVG hosts maintained BN cardiac allografts without any evidence of acute or chronic rejection after 300 days post transplant. This body of work has demonstrated that the use of soluble donor/recipient allochimeric class I MHC proteins with a short peri-operative course of CsA resulted in transplant tolerance. This treatment regimen proffers a clinically relevant approach to the induction of tolerance across MHC barriers. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have led to the development of allochimeric class I MHC proteins as agents that effectively induce donor-specific transplantation tolerance in a rat system with or without additional immunosuppression. Within the α1-helical region of RT1.Au, an epitope that conferred immunologic tolerance was discovered. Studies presented herein were designed to test our central hypothesis that allochimeric proteins onfer tolerance in a mouse model. To test this hypothesis, portal vein (PV) injection of wild-type H2Kd and H2Dd proteins were produced in a bacterial expression system and found to specifically prolong the survival of BALB/c (H2d) heart allografts in C57BL/10 (H2b) recipients. Although a single PV injection of 50 μg α1–α 3 H2Kd alone was ineffective, 50 μg α1 –α3 alone slightly prolonged BALB/c heart allograft survivals. In contrast, the combination of 25 μg α1–α 3 H2Kd and 25 μg α1–α 3 H2Dd proteins prolonged BALB/c graft survivals to 20.2 ± 6.4 days (p < 0.004). The effect was donor-specific, since a combination of 25 μg α1–α3 H2Kd and 25 μg α1–α3 H2Dd proteins failed to affect survivals of third-party C3H (H2k k) heart allografts, namely 9.0 ± 0.0 days in treated versus 7.8 ± 0.5 days in untreated hosts. Thus, the combination of two H2K d and H2Dd proteins is more effective in prolonging allograft survival than a single protein produced in a bacterial expression system. A single PV injection (day 0) of 25 μg α1–α 2 H2Kd and 25 μg α1–α 2 H2Dd proteins to C57BL/10 mice prolonged the survival of BALB/c heart allografts to 22.4 ± 4.5 days. Within a WF to ACI rat heart allograft system, a single PV injection of 20 μg 70–77 u-RT1.Aa induced specific tolerance of allografts. This therapy could be combined with CsA to induce transplantation tolerance. However, combination of 70–77u-RT1.Aa with CTLA4Ig, rapamycin, or AG-490 effectively blocked the induction of transplantation tolerance. Tolerance generated by allochimeric protein could be adoptively transferred to naive recipients. Intragraft cytokine mRNA levels showed a bias towards a Th2-type phenotype. Additionally, studies of cytokine signaling and activation of transcription factors revealed a requirement that these pathways remain available for signaling in order for transplantation tolerance to occur. These studies suggest that the generation of regulatory cells are required for the induction of transplantation tolerance through the use of allochimeric proteins. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Class I major histocompatibility complex (MHC) molecules induce either accelerated rejection or prolonged survival of allografts, presumably because of the presence of immunogenic or tolerogenic epitopes, respectively. To explore the molecular basis of this phenomenon, three chimeric class I molecules were constructed by substituting the rat class I RT1.A$\sp{\rm a}$ sequences with the N-terminus of HLA-A2.1 (N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$), the $\alpha\sb1$ helix (h) with $\rm\alpha\sb{1h}\sp{u}$ sequences ( ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$) or the entire $\alpha\sb2$ domain (d) with $\rm\alpha\sb{2d}\sp{u}$ sequences ( ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$). Wild type (WT) and chimeric cDNAs were sequenced prior to transfection into Buffalo (BUF; RT1$\sp{\rm b}$) hepatoma cells. Stable transfectants were injected subcutaneously (s.c.) into different hosts 7 days prior to challenge with a heart allograft. In BUF hosts, chimeric ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ accelerated the rejection of Wistar Furth (WF; RT1$\sp{\rm u}$) heart allografts, but had no effect on the survival of ACI (RT1$\sp{\rm a}$) grafts. In contrast, the ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ (containing $\rm\alpha\sb{1d}\sp{a}$ sequences) immunized BUF recipients toward RT1$\sp{\rm a}$ grafts. In WF hosts, WT-RT1.A$\sp{\rm a}$ was a potent immunogen and accelerated ACI graft rejection, N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$ was less effective and ($\rm\alpha\sb{\rm 1h}\sp{u}\rbrack$-RT1.A$\sp{\rm a}$ was not immunogenic. Thus, dominant and subdominant epitopes inducing in vivo sensitization to cardiac allografts are present in the $\alpha\sb1$ helix and the N-terminus, respectively. The failure of ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants (containing recipient-type $\alpha\sb{\rm 2d}$ sequences) to sensitize WF hosts toward ACI (RT1$\sp{\rm a}$) grafts, despite the presence of donor-type immunogenic $\alpha\sb{\rm 1d}\sp{\rm a}$, suggests that "self-$\alpha\sb2$" sequences displayed on chimeric antigens interfere with immunogenicity. The ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants injected s.c. prolonged the survival of WF (RT1$\sp{\rm u}$) hearts in ACI (RT1$\sp{\rm a}$) recipients. Furthermore, intra-portal injection of extracts from ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$, but not WT-RT1.A$\sp{\rm a}$ or RT1.A$\sp{\rm u}$, in conjunction with a brief cyclosporine course rendered ACI hosts permanently and specifically tolerant to donor-type WF cardiac allografts. Thus, immunodominant allodeterminants are present in the $\alpha\sb1$, but not the $\alpha\sb2$, domain of rat class I MHC molecules. Furthermore, the $\rm\alpha\sb{1h}\sp{u}$ immunogenic epitopes trigger tolerogenic responses when flanked by host-type N-terminal$\sp{\rm a}$ and $\rm\alpha\sb{2d}\sp{a}$ sequences. ^